
Relocalization under Substantial Appearance Changes using Hashing

Olga Vysotska Cyrill Stachniss

Abstract— Localization under appearance changes is essen-
tial for robots during long-term operation. This paper inves-
tigates the problem of place recognition in environments that
undergo dramatic visual changes. Our approach builds upon
previous work on graph-based image sequence matching and
extends it by incorporating a hashing-based image retrieval
strategy in case of localization failures or the kidnapped robot
problem. We present a variant of hashing algorithm that allows
for fast retrieval for high-dimensional CNN features. Our
experiments suggest that our algorithm can reliably recover
from localization errors by globally relocalizing the robot. At
the same time, our hashing-based candidate selection is sub-
stantially faster than state-of-the-art locality sensitive hashing.

I. INTRODUCTION

The ability to localize itself is an essential capability for
goal-directed robot navigation. A central ingredient of local-
ization as well as mapping is the capability to identify that
the robot is at a previously visited place, i.e., to make the data
association between the current observation and a previously
taken one. When operating in changing environments such
as outdoor scenes, the localization system should be able to
deal with substantial appearance changes. An example for
such appearance changes is depicted in Fig. 1. Both images
correspond to the observations taken at the same physical
location but at different times during the day.

The task of localization through image matching for
handling substantial changes in the appearance of a place has
been tackled by several researchers [4], [5], [7], [14], [19],
[21]. In line with previous work on this topic, we also rely
on sequence information, i.e., exploit the fact the images are
not obtained in a random order but according to the physical
motion of the robot through the environment. We solve the
problem by building a data association graph, where possi-
ble paths through this graph correspond to different image
matching hypothesis. Efficient relocalization is achieved by
a locality sensitive hashing strategy.

The main contribution of this work is a online approach
for finding correspondences between the currently acquired
image stream and a previously recorded image sequence even
under strong appearance changes. Our work is an extension
of our previous work as it uses the lazy search approach
proposed in [21] but proposes several extensions. First, we
provide a way for dealing with loops in the reference or
database sequences and introduce new edges into the data
association graph that is build up on the fly. Second, we

All authors are with the University of Bonn, Institute of Geodesy and
Geoinformation, Bonn, Germany.

This work has partially been supported by the DFG under contract number
FOR 1505 Mapping in Demand.

=

Fig. 1. Challenging image pairs for place recognition systems. Both images
have been recorded at the same place but during different times resulting in
strong appearance changes. The approach presented in this paper identifies
such corresponding images via sequence information and can handle loops
in the database sequences, recover from localization failures, as well as deal
with the kidnapped robot problem.

provide an efficient way for relocalizing the robot in case
it got lost. Both extensions naturally integrate with and
extend [21] so that the same search approach and search
heuristic can be re-used. This furthermore does not affect
the online nature of the solution and the data association
graph is still built incrementally.

We make the following three claims for our approach. It is
able to (i) quickly relocalize the robot globally after getting
lost and can handle the kidnapped robot problem, (ii) can be
executed in an online fashion during navigation and requires
only a small amount of image to image comparisons, and (iii)
deal with loops in the reference images sequence while not
relying on GPS information or similar means. These three
claims are backed up through our experimental evaluation.

II. RELATED WORK

Localization is a relevant and frequently studied problem
in robotics. A prominent approach to visual localization is
FAB-MAP2 [5]. Dealing with substantial variations in the
visual input, however, has been recognized as an obstacle for
persistent autonomous navigation and one way to address it is
to exploit sequence information for the image alignment [9],
[13], [12], [14].

Over the past few years, different types of features have
been investigated for place recognition. Some approaches
use variants of HOG features such as [14] or Bag of Words
models optimized to seasonal changes [16]. More recently,
multiple researchers apply learned features as proposed by
Sermanet et al. [17] and suggested for place recognition by
Chen et al. [3]. These CNN features yield a high matching
quality but are rather high-dimensional, i.e., comparisons are
computationally expensive. This motivates the binarizations
of such features and efficient comparisons using the Ham-
ming distance [2]. Other alternatives are place-dependent
features, which are optimized to the current location [11].

There is an increasing interest in the systems that can
localize under appearance changes and different weather
conditions. The experience-based navigation paradigm [4]
stores multiple images or experiences for individual places
and extends the place model whenever matching the current
images to previous ones becomes challenging. Extension of
experience-based navigation targets large-scale localization
by exploiting a prioritized collection of relevant experiences
so that the number of matches can be reduced [9]. SeqS-
LAM [13] aims at matching image sequences under strong
seasonal changes and computes an image-by-image matching
matrix that stores similarity scores between the images in
a query and database sequence. It computes a straight-line
path through the matching matrix and selects the path with
the smallest sum of similarity scores across image pairs to
determine the matching route. Milford et al. [12] present a
comprehensive study about the SeqSLAM performance on
low resolution images. Related to that, Naseer et al. [14]
focus on offline sequence matching using a network flow
approach and Vysotska et al. [21] extended this idea towards
an online approach with lazy data association and build
up a data association graph online on demand. Our paper
extends [21] by allowing more flexible reference trajectories
as well as efficient means for relocalization.

In visual place recognition, relocalization after getting lost
can be achieved by comparing the query image to all images
in the reference dataset as it was used by Neubert et al. [15].
To optimize the process of finding similar images in large
datasets Gionis et al. [6] proposed using hashing algorithm,
which was intensively used to solve text retrieval problems,
to search for duplicates and even similar images in the large
dataset, known as locality sensitive hashing (LSH). In LSH,
slight variation in the image domain should only lead to
slight variations in the hash. The disadvantage of LSH is
that it relies on a quite large number hash tables (> 100
is suggested in practice) to obtain a high retrieval accuracy.
To tackle this problem, Lv et al. [10] propose an efficient
indexing strategy, which allowed to reduce the number of
hash tables.

The popularity of the CNNs resulted in learned features,
which are high-dimensional in comparison to those used
by Lv et al. This slows down multi-probe LSH when
matching full image sequences. An alternative approach to
improve retrieval is spectral hashing [22], where a variant of
spectral clustering is performed on the database before the
operation in order to find better hash codes. Due to the high-
dimensionality of CNN features, spectral clustering becomes
computationally intractable and thus we rely on a variant of
LSH proposed by Lv et al.

III. OUR APPROACH

A. Lazy Data Association for Image Sequence Matching

The approach proposed in this paper is an extension of our
previous approach for visual place recognition in changing
environments [21]. The central idea of [21] is to perform
visual place recognition by matching image sequences: Given
a sequence of images, also called reference sequence, find

...

...

...

... ...

database images

q
u
e
ry

 i
m

a
g
e
s

0:

1:

2:

source

:

Fig. 2. Graph structure inherited from the [21]. Green circles denote
expanded nodes (for which two feature vectors are compared); right circle
- match; blue - non match, but support the path hypothesis.

for the stream of incoming images the visually most similar
(sub-)sequence in the reference sequence. For making the
required associations, the approach uses the ideas of lazy data
association and solves the matching problem in an online
fashion.

We formulate the problem of matching image sequences
as a graph search problem, in which every node represents
the potential match between two images and edges encode
possible transitions between nodes. The shortest path through
this graph corresponds to the most likely data association
between the image sequences. Fig. 2 depicts the structure
of such a data association graph: green circle denotes the
nodes for which the matching cost has been computed and
blue (or red) nodes are those that belong to the found path.
The blue nodes are so-called hidden nodes, the ones that
support the path topology, but whose matching cost is higher
than a specified parameter (non-matching cost), i.e. the image
appear dissimilar. The red nodes are the ones for which
corresponding matching cost is lower than the non-matching
cost. The search ends (for each new image in the sequence)
when the latest image gets associated to a reference image,
either as hidden or real node.

This approach can accurately match image sequences but
has also some limitations. First, it cannot relocalize well
once lost. Second, it makes assumptions that query trajectory
roughly follows the reference trajectory. In this paper, we
overcome both limitations.

B. Robust Image Matching Costs with CNN Features

To align image sequences, we need to match the individual
images. Our approach represent each image by a single high-
dimensional feature vector. In their extensive study, Chen et
al. suggest that the 10th layer of the convolutional neural
network OverFeat [17] produces robust features for changing
environments. The size of the output feature vector depends
on the size of the input image. We opted for the smallest
acceptable size of 450× 250 pixels, which results in feature
vector of approx. 200, 000 dimensions. Note, however, that
our algorithm is not limited to this kind of features and we
will plan to investigate alternative features such those from
VGG-16 [18], Net-VLAD [1] and PoseNet [8] in our future
work.

1 1 1 0 0 0 0

1 1 1 0 0 1 1

0 0 0 0 1 0 1

0

1

2

0 1 2 3 4 5 6

0:
1:
2:
4:
5:
6:

0, 1
0, 1
0, 1
2
1
1, 2

1 1 1 0 1 0 0

0 1 2 3 4 5 6

Fig. 3. Example of the proposed hashing algorithm. Here the dataset
consists of 3 feature vectors of dimension 7 each. An entry of hash table
H[2] stores the IDs of the feature vectors 0 and 1, since for both of them,
dimension 2 has the value of 1. For a query feature, the set of dimensions
that take a value of 1 is A = {0, 1, 2, 4}. By collecting the values from
H , the set of potential matching candidates is 0 with occurrence 3, 1 with
occurrence 3 and 2 with occurrence 1. The resulting matching candidates
for query q are {0, 1}.

C. Efficient Relocalization Strategy

No localization system is free of failures. Thus, it can
happen that a robot gets lost, i.e, it cannot establish a cor-
respondence between its current observations and the model
anymore. In our case, this means that the (sub-)sequence
of images, which the robot is currently acquiring, cannot
be matched to the reference sequence anymore. A common
reason for that in practice is the fact that the robot moves
along a so far unseen trajectory, for example, when leaving
the mapped area.

A good relocalization system should be able to detect
whenever the robot reenters the previously mapped area in
order to resume or restart the localization. To detect whether
the robot is lost, we analyze the nodes of the best current
matching hypothesis within the sliding window over time.
If the percentage of the hidden nodes within this window
exceeds 80%, i.e. only 20% of the images can be matched
to the reference sequence, we consider the robot as lost. The
size of the window depends on the framerate of the camera
and potentially also on the speed of the robot1.

A straightforward but computationally demanding way to
find a reentry point is a brute force search through the whole
reference database. Instead, we propose to use hashing for
identifying potential reentry points. This results in comparing
a query image only to the subset of the database images that
are mapped to the same hash key. Hashing techniques are
known to be robust and efficient to find image duplicates. In
contrast to standard (cryptographic) hashing such as MD5
or SHA1, hashing for image retrieval is expected to assign
similar features to the same or neighbouring buckets, i.e.,
to similar hash keys. This property is referred to as locality
sensitive. Locality sensitive hashing (LSH) proposed in [6]
was one of the first approaches to apply hashing for image
retrieval problems.

We found that the use of an improved version of the LSH,
called Multi-Probe LSH proposed by Lv et al. [10] is better

1In our experiments (using car in an urban environment), the size was
set to 10 s.

suited for image matching tasks. Multi-Probe LSH builds on
top of the LSH but specifies an intelligent strategy to probe
specified buckets in multiple hash tables to get the higher
probability of finding similar images. In our work, we use
the Multi-Probe LSH in the following way: The moment the
robot is considered lost, the algorithm starts to hash every
incoming image qi and looks up for candidates C(qi), stored
in the hash buckets, according to the probe strategy. More
information about the probing strategy can be found in [10].
After the potential matching candidates are retrieved, we add
the corresponding nodes to the graph

Ereentry = {(x(i−1)j , xc)}c∈C(qi) (1)

where i is the id of the current query image qi, the term
x(i−1)j corresponds to a node representing current best
matching hypothesis, and c refer to ids of the images in the
reference dataset that were retrieved as matching candidates
based on hashing.

Originally, Multi-Probe LSH was designed to match im-
ages that were taken under similar conditions and was
used with relatively low dimensional features, e.g. 64 or
192 dimensions. In this work, however, we rely on high
dimensional features (around 200K dimensions) as they show
a better matching performance under changing conditions.
This naturally leads to an increase in the querying time for
computing the potential candidates from the database.

To tackle this issue, we propose an alternative hashing
algorithm designed to explicitly take into account the high-
dimensionality of the data and thus improve the querying
time without compromising matching performance.

As in every hashing algorithm, the first step is to construct
the hash table H . We start with binarizing the feature vectors
that represent the images from the reference dataset. We
inherit the binarization strategy for CNN features proposed
by Arroy et al. [2]. To receive the binary values, we first scale
the feature vector so that the dimension with largest spread
lies in the interval [0, 255] and afterwards all dimensions
higher than a middle value 128 are assigned to 1, others 0.
Formally:

f int = (f cnn −min(f cnn))
255

max(f cnn)−min(f cnn)
,(2)

fbin =

{
1, iff int >= 128,

0, iff int < 128
(3)

Let us assume we need to hash a dataset that consists
with N features indexed with n ∈ [0, N] and each of the
feature has D dimensions indexed with d ∈ [0, D]. Then,
every entry in the hash table H[d] stores the set of indices
of all the features that have a value of 1 in dimension d:

H[d] = {n | fbinn [d] = 1} (4)

In a query phase, the incoming image q gets also binarized
using the same procedure as in Eq. (3). Afterwards, we
extract a set of indices A(q) of dimensions take the value of
1 for the image q:

A(q) = {d | fbinq [d] = 1}, (5)

where |A| = M < D and typically M � D. We collect all
the feature indices from the hash table, that take a value of
1 for the dimension stored in A

H[A] = ∪̂a∈AH[a], (6)

where ∪̂ denotes the set union preserving duplicates. We
intentionally keep the duplicates in the set to further select
those feature candidates that have high number of occur-
rences in the set H[A]. This represents the fact that the
query feature q and candidate features from the database
share a substantial set of feature dimensions taking a value
of 1. Thus, they are likely to represent the same place. For
an illustration of the hashing procedure, consider the toy-
example in Fig. 3.

D. Loopy Reference Sequences

While recording the reference image sequence, it can
happen that the robot moves along the same route multiple
times. It may even be unavoidable given the topology of
the environment. In practice, this situation occurs frequently
when considering a typical urban mapping run using a car. In
Fig. 4 (left), we provide a sketch of a trajectory that shows
the situation in which reference trajectory visits the same
place in the environment twice from ’B’ to ’C’. The cost
matrix for a corresponding real world situation is depicted
in Fig. 13 (left) in the experimental section. In these matrices,
bright pixels correspond to a pair of images that appear
similar given the feature vectors, whereas dark pixels suggest
a low similarity. In this case after visiting the place ’C’,
there are two possibilities to proceed, either visiting ’C-D’
or ’C-F’. As the query trajectory follows the ’C-F’ route,
we can see a brighter pattern on the right lower part of
the cost matrix in the Fig. 13 (left), whereas if the query
trajectory followed the ’C-D’ direction, the pattern would
appear in a left lower part of the matrix. The previous version
of our approach [21], cannot handle this situation flexibly,
because the query sequence is expected to roughly follow
the reference one.

In this paper, we extend the approach so that the search
algorithm can flexibly “jump” between similar places in
reference sequence. The ability to “jump” is established
by creating the edges in the graph between the nodes that
correspond to the similar places in the environment. If
we know that image a corresponds to image b within the
reference sequence, then whenever the algorithm is requested
to expand the graph from the node xia, it will also expand
from the node xjb

Esim = {(xia, x(i+1)k)}k=b−K,...,b+K (7)

where K - is a fan-out parameter that compensates for
different robot speeds or camera frame rates. The same
thoughts hold if the graph gets expanded from the node xib.

To be able to establish these nodes, we need to identify
which places, i.e. images, in the reference dataset represent
the same place. Since the evaluations are performed only
on the reference dataset, finding of the similar place can be
done offline using standard place recognition algorithm such

DE

A B C F

reference

query

same place

A B C D

reference query lost

Fig. 4. Left: Sketch of similar places situation. Right: sketch of a query
detour during which the robot is lost.

ground truth

matching costs

expanded nodes

real match hidden match

Fig. 5. Example of possible outputs in our experiments. The cost matrix
stores the costs of matching individual images (not used in our algorithm).
Expanded nodes - matching costs computed in our algorithm. Real matches
- image pairs that represent the same place and hidden match - image pairs
that support the path hypothesis, but have low matching cost. Ground truth
matches that represent the same place in reality.

as FABMAP2 [5] since the images stem from the the same
appearance within the reference trajectory.

IV. EXPERIMENTAL EVALUATION

Our experiments are designed to show the capabilities of
our method and to support our key claims, which are: Our
approach is able to (i) quickly re-localize after a period
while navigating without additional pose information, (ii)
handle the kidnapped robot problem, (iii) be executed in
an online fashion, and (iv) deal with loops in the reference
images sequence. We furthermore provide comparisons to
an existing methods such as [14], [13], [21]. We perform the
evaluations on own datasets as well as on publicly available
ones. To support the claims made in the beginning of the
paper, we have selected the datasets that explicitly represent
a particular challenge for localization. Some of them stem
from the Freiburg datasets used in [20], [21] and others from
the VPRICE Challenge dataset. Additionally, we collected a
more challenging dataset in terms of trajectory shapes. We
collected the data in Bonn with a car and a dashboard camera.
The query as well as reference trajectory contains several
revisits of the same places. In this paper, we use the datasets
collected in the morning with slight rain and overcast as well
as in the evening and very late evening on different days.
Example images can be seen in Fig. 1.

Note, that throughout all the experiments the cost matrix
was only computed for visualization purposes. The matching
algorithm only computes the matching costs for the image
pairs visualized in green. To enhance the visualization of the
cost matrix for larger datasets, we also overlayed the ground
truth results, see Fig. 5 for further notations.

Fig. 6. Example of a cost matrix for matching two trajectories, where the
query trajectory deviates from the reference one twice. Once at the beginning
and then in the middle. The places are marked with pink rectangles. Left:
matching matrix. Middle: result of proposed algorithm. Right: Result using
previous approach. Note that the full cost matrix for matching is only shown
for visualization and does not need to be computed by our approach.

A. Matching Performance and Localization Recovery

The first set of experiments is designed to show that our
approach is able to quickly relocalize after the system has
identified that it cannot find matching images for a certain
amount of time. This typically has the reason that the robot
is navigating outside the mapped area or that the robot has
been “kidnapped and teleported” to a different location the
map. In our setup, kidnapping is equivalent to the situation
that robot has deviated from a previously taken path and now
moves on a different subsequence of the reference data.

The first experiment is designed to show how our approach
can deal with situations, in which the robot is navigating
outside the mapped area (reference sequence). This means
that there are no corresponding images with respect to the
reference sequence. An example for that can be seen in
Fig. 6 (left) marked by the large rectangles. Fig. 6 (middle)
illustrates that our approach localizes the robot in such
a situation (as can be seen from the red (matched) and
blue (unmatched) pixels. In contrast, the standard lazy DA
approach [21] finds the matches only partially as is searches
in the wrong area of the graph, see Fig. 6 (right).

We further tested our system on the publicly available
VPRICE Challenge dataset to illustrate the handling of
the kidnapped robot problem. We depict here the part that
contains images where a person is moving with a hand-held
camera during the day in the reference sequence and repeats
the same path during the day and at night within the query
sequence. Since the image sequences between the day and
night runs are appended to each other, this corresponds to the
kidnapped robot situation, i.e. the robot was teleported from
the current location (end of the sequence) to another place
(beginning of the sequence). As Fig. 7 (middle) suggests
also in this case we can dramatically improve the matching
quality with respect to our previous approach Fig. 7 (right).
Furthermore, we evaluated our approach on a more challeng-
ing dataset that has multiple revisits of the same places in
query as well as reference sequence, see Fig. 8. The left

Fig. 7. Example of the trajectory matching from the VPRICE datasets. Here
the query trajectory follows the reference trajectory twice, once during the
day time (upper matrix part) and once during the night time (lower matrix
part). Left: cost matrix. Middle: result of proposed algorithm. Right: Result
using previous approach.

Fig. 8. Matching example from the Freiburg dataset. The trajectory contains
partial revisits of the reference sequence as well as detours in the query
sequence. Left: cost matrix. Middle: result of proposed algorithm. Right:
Result using previous approach.

image of Fig. 9 depicts the precision-recall curve and as can
be seen the quality of the result is also better than in our
previous approach [21] (here labeled as “RAL’16”) exactly
due to the ability to detect loops. Fig. 9 (right) visualizes the
results for a dataset with a query loop and relocalization part,
as in Fig. 6 and it clearly outperforms the RAL’16 approach.

The next experiment is performed using more challenging
shapes of trajectories, recorded in downtown Bonn. In Fig. 10
the query sequence was collected in the morning with a slight
rain, whereas the reference in the late evening around a week
later. The trajectories only partially overlapped, which results
in broken bright patterns in the cost matrix. As can be seen
the proposed approach (middle) is able to find the underlying
pattern, i.e. find the matches, whereas our previous approach
can only perform reliably within the continuous pattern.
Fig. 11 shows the results for another pair of trajectories. The
query sequence was collected in the early evening, whereas
the reference in the late evening. As can be seen the proposed
approach finds the underlying pattern as well as ignores the
areas, where the query trajectory deviates from the reference
one, thus no matching images and minimal expansion are
expected. Due to inability of our previous method to handle
the loops in the trajectories, without (GPS) priors, it performs
poorly on this dataset.

To evaluate the performance of our approach in a more
quantitative way, we computed precision recall as well as

Recall

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

proposed

RAL‘16

OpenSeqSLAM

Recall

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

0.4

0.5

0.6

0.7

0.8

0.9

1

proposed

RAL‘16

Fig. 9. Precision recall plots for the dataset with multiple loops in query in
references sequences (left) and the dataset with a query connected through
the similar places in the reference sequence (right).

Fig. 10. Matching example of trajectories from Bonn in which both
trajectories contain loops. The query also deviates for reference trajectory for
a significant amount of time. Left: cost matrix with ground truth overlayed.
Middle: proposed approach; Right: Result using previous approach.

F1-score statistics for the given datasets, see in the Tab. I. As
it can be seen, by introducing the additional constraints and
an efficient relocalization strategy, we are able to increase
the number of found image matches (recall) with almost the
same precision rate as in our previous paper. This naturally
leads to an increase in accuracy in terms of F1-score.

B. Hashing comparison

The second experiments is designed to show that the
performance of the proposed relocalization strategy and the
Multi-probe locality sensitive hashing is comparable. We
also confirm that the proposed hashing algorithm runs faster
for the data with very high dimensional features. For the
Multi-probe hashing we use the OpenCv implementation. We
select the following parameters for all of the experiments:
number of tree = 1, key size = 10 and probe level = 2.
From our experience selecting a higher number of trees
or key size does not improve the performance of the al-
gorithm, but, dramatically increases the computation time.
Fig. 12 depicts only small deviations of the precision recall

Fig. 11. Additional matching example from Bonn. Left: cost matrix with
ground truth overlayed. Middle: proposed approach; Right: Result using
previous approach.

TABLE I
QUALITATIVE COMPARISONS BETWEEN THE IMAGE SEQUENCE

MATCHING APPROACH FROM [21] (RAL’16) AND PROPOSED METHOD.
TRAJECTORIES OF VARIOUS SHAPES.

RAL’16 Proposed
exp pr; re F1 exp pr; re F1

1 7,3% 0.98; 0.35 0.51 6% 0.95; 0.92 0.93
2 12,6% 0.89; 0.63 0.74 11% 0.89; 0.91 0.86
3 10,3% 0.55; 0.64 0.59 4.2% 0.7; 0.71 0.70
4 2.9% 0.99; 0.31 0.48 1.5% 0.95; 0.76 0.84
5 2.7% 0.72; 0.35 0.46 1.8% 0.8; 0.81 0.80

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

LSH
DH

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

LSH
DH

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n
LSH
DH

Fig. 12. Precision recall plots for different pairs of trajectories from Bonn
dataset. LSH - results for locality sensitive hashing, DH - proposed hashing
algorithm (dimension hashing).

curves between the locality sensitive hashing (LSH) and
the proposed dimension hashing (DH), which indicates that
both hashing algorithm perform equally good on multiple
datasets. On the other hand, the run time of the individual
hashing strategies differ dramatically. For querying a set of
candidates the LSH on average takes 120ms, whereas DH
retrieves the candidates in on average in 600µs, which makes
the candidates extraction time around 200 times faster. This
speedup has a substantial impact on the overall timing.

Given the OverFeat feature vectors, we obtain the follow-
ing timings. Processing a single image while being localized
takes 2− 3ms. In contrast, processing a single image while
being lost takes 30 − 80ms using our DH hashing and
150 − 200ms using LSH. Thus, our approach reduces the
runtime for the relocalization by a factor of 2.5-5 in our
experiments.

C. Loops in Reference Sequences

The last experiment is designed to show that taking into
account the similarity of the places in the reference sequence
leads to better localization results. As it can be seen, in
Fig. 13 (middle), our proposed approach finds the underlying
pattern as oppose to the approach that does not take into
account the notion about the place similarity Fig. 13 (right).
Again this is an expected results and was the reason for

Fig. 13. Example of trajectories, where the reference sequence traverses
the same place in the environment twice (marked with orange squares)
and deviates in two difference direction upon exiting similar area. The
query trajectory then also passes the ”marked” area and follows one of the
direction in the reference sequence. Middle: result of proposed algorithm.
Right: Result using previous approach.

implementing this approach. Experiments with other datasets
show similar results, but are omitted here in sake of brevity.

V. CONCLUSION

In this paper, we presented a new approach for quickly
finding correspondences between a currently observed image
stream and a previously recorded image sequence under
strong appearance changes. Related to [21], we build a
data association graph incrementally and search for a data
association sequence using an effective search heuristic. The
work proposed here overcomes two key limitations of our
previous method. First, we provide an efficient way for
re-localizing the robot in situations, in which it got lost,
after the robot has left the previously mapped areas and is
reentering the known part of the environment or to solve
the kidnapped robot problem. Second, our new approach
can deal with loops in the reference sequences effectively
without additional pose priors, like GPS. We implemented
and evaluated our approach on different publicly available
datasets. Our evaluations and comparisons show that we
can handle the above mentioned situations, which could not
been solved with the approach in [21]. We furthermore show
through the experiments that the our approach runs online,
provides an effective image matching, and supports all claims
made in this paper.

ACKNOWLEDGMENT

The authors would like to thank Nived Chebrolu for pro-
viding hardware support during the experiments and Andres
Milioto for hacking the GoPro GPS interface for simplifying
the evaluations.

REFERENCES

[1] R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. NetVLAD:
CNN architecture for weakly supervised place recognition. In IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

[2] R. Arroyo, P.F. Alcantarilla, L.M. Bergasa, and E. Romera. Fusion and
binarization of cnn features for robust topological localization across
seasons. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), pages 4656–4663, 2016.

[3] Z. Chen, O. Lam, A. Jacobson, and M.Milford. Convolutional neural
network-based place recognition. In In Proc. of the Australasian
Conf. on Robotics and Automation., 2014.

[4] W. Churchill and P. Newman. Experience-based navigation for long-
term localisation. Int. Journal of Robotics Research, 32(14):1645–
1661, sep 2013.

[5] M. Cummins and P. Newman. Highly scalable appearance-only SLAM
- FAB-MAP 2.0. In Proc. of Robotics: Science and Systems, 2009.

[6] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. In VLDB, volume 99, pages 518–529, 1999.

[7] A.J. Glover, W.P. Maddern, M. Milford, and G.F. Wyeth. FAB-MAP
+ RatSLAM: Appearance-based slam for multiple times of day. In
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),
pages 3507–3512, 2010.

[8] A. Kendall, M. Grimes, and R. Cipolla. PoseNet: A Convolutional
Network for Real-Time 6-DOF Camera Relocalization. In Proc. of
the Int. Conf. on Computer Vision (ICCV), 2015.

[9] C. Linegar, W. Churchill, and P. Newman. Work smart, not hard:
Recalling relevant experiences for vast-scale but time-constrained
localisation. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2015.

[10] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-
probe lsh: efficient indexing for high-dimensional similarity search.
In VLDB, pages 950–961, 2007.

[11] C. McManus, B. Upcroft, and P. Newman. Learning place-dependant
features for long-term vision-based localisation. Autonomous Robots,
39(3):363–387, 2015.

[12] M. Milford. Vision-based place recognition: how low can you go?
Int. Journal of Robotics Research, 32(7):766–789, 2013.

[13] M. Milford and G.F. Wyeth. Seqslam: Visual route-based navigation
for sunny summer days and stormy winter nights. In Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2012.

[14] T. Naseer, L. Spinello, W. Burgard, and C. Stachniss. Robust visual
robot localization across seasons using network flows. In Proc. of the
AAAI Conf. on Artificial Intelligence, 2014.

[15] P. Neubert, S. Schubert, and P. Protzel. Exploiting intra database
similarities for selection of place recognition candidates in changing
environments. In Proc. of the CVPR Workshop on Visual Place
Recognition in Changing Environments, 2015.

[16] P. Neubert, N. Sunderhauf, and P. Protzel. Appearance change
prediction for long-term navigation across seasons. In Proc. of the
Europ. Conf. on Mobile Robots (ECMR), 2013.

[17] P. Sermanet, D. Eigen, Z. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun. Overfeat: Integrated recognition, localization and detection using
convolutional networks. In Intl. Conf. on Learning Representations
(ICLR), 2014.

[18] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. CoRR, abs/1409.1556, 2014.

[19] E. Stumm, C. Mei, S. Lacroix, and M. Chli. Location graphs for
visual place recognition. In Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 2015.

[20] O. Vysotska, T. Naseer, L. Spinello, W. Burgard, and C. Stachniss.
Efficient and effective matching of image sequences under substantial
appearance changes exploiting gps priors. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2015.

[21] O. Vysotska and C. Stachniss. Lazy data association for image
sequences matching under substantial appearance changes. IEEE
Robotics and Automation Letters (RA-L), 1(1):1–8, 2016.

[22] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Advances
in neural information processing systems, pages 1753–1760, 2009.

