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Zusammenfassung

Systeme fiir rechnerbasierte Szeneninterpretation werden héufig als
Erweiterung von Objekterkennungssystemen konzipiert, bei denen die
fiir niedere Verarbeitungsstufen iibliche bottom-up Verarbeitung auch
auf die hohere Bilddeutung ausgedehnt wird. In diesem Bericht stellen
wir ein generisches Szeneninterpretationssystem vor, das Hypothe-
sen generieren und top-down Verarbeitungsschritte anstoflen kann.
Dadurch ist es moglich, 6rtlich fokussierte und spezifisch parametrierte
Bildanalysen durchzufiithren. Es werden experimentelle Ergebnisse zur
Erkennung von Strukturen in Gebaudefassaden vorgelegt.



Abstract

Scene interpretation systems are often conceived as extensions of
low-level image analysis with bottom-up processing for high-level in-
terpretations. In this paper we show how a generic high-level interpre-
tation system can generate hypotheses and start top-down analysis.
This allows for spatially focussed and specifically parametrised image
analysis steps. Experimental results of the recognition of structures
in building facades are reported.



1 Introduction

In recent years, growing interest in artificial cognitive systems has brought
about increased efforts to extend the capabilities of computer vision systems
towards higher-level interpretations [2, 16, 23, 19, 7, 6, 12]. Roughly, a high-
level interpretation can be defined as an interpretation beyond the level of
recognised objects. Typical examples are monitoring tasks (e.g. detecting a
bank robbery), analysing traffic situations for a driver assistance system or
interpreting aerial images of complex man-made structures. While existing
approaches to high-level interpretation differ in many respects, they have in
common that prior knowledge about spatial and temporal relations between
several objects has to be brought to bear, be it in terms of probabilistic
models [19], frame-based models called aggregates, logic-based conceptual
descriptions [16], Situation Graph Trees [15] or Scenarios [5]. In the following,
we will use the term “aggregate” for meaningful multiple-object units of a
high-level scene interpretation.

In extending vision to high-level interpretations, one of the challenges
is to exploit expectations derived from high-level structures for improved
low-level processing. There exists much work addressing expectation-guided
image analysis [15, 22, 14, 4], but to our knowledge few vision systems with
a generic architecture have been proposed which allow to feed back expec-
tations from aggregates at arbitrarily high levels of abstraction to image
analysis procedures at the level of raw images. Nagel [1] has been one of
the first to demonstrate with concrete experiments in the street traffic do-
main that high-level hypotheses about intended vehicle behaviour could in
fact be used to influence the tracking unit and thus improve tracking under
occlusion.

In this contribution we show how a scene interpretation system based on
aggregates, introduced as generic high-level conceptual units in [10, 17, 16],
can generate feedback in a generic manner. This is demonstrated by experi-
ments with the fully implemented scene interpretation system SCENIC. One
of the core mechanisms of SCENIC is the capability of part-whole reason-

ing, i.e. the capability of establishing an aggregate instantiation based on



evidence for any of the aggregate parts. This allows one to generate strong
expectations about further evidence for parts of this aggregate and to feed
back these expectations to lower levels. In SCENIC, this feedback process
has been extended to control image-analysis processes below the level of
recognised objects which provide the input to the high-level interpretation
system. To our knowledge, this is the first time that a generic high-level
scene analysis system can control low-level processing down to the level of
raw images.

Our general approach will be described in Section 2. It is motivated by
considering scene interpretation as a model construction task (in the logical
sense). As such, an interpretation provides instantiations of the conceptual
knowledge base consistent with evidence and any context information which
may be available. In principle, SCENIC can deliver all consistent interpre-
tations. In its current state, SCENIC does not use probabilistic information
as a preference measure for choosing interpretations but explores the space
of logically consistent interpretations by specific interpretation strategies.

After the overview we shall present the processing levels from bottom to
top and explain their role in feedback processing. In Section 3 one of the
low-level modules of SCENIC will be described, specialised for the current
application domain of SCENIC, the interpretation of building facades. The
module extracts windows and can be controlled by top-down guidance.

In Section 4 we present the intermediate layer between low-level analysis
and high-level interpretation. As a two-way link between low-level and high-
level processing, it poses several challenges. Its main function is to match
evidence with expectations. Given evidence, it generates hypotheses about
likely scene objects, given hypotheses it looks for matching evidence or even
initiates low-level analysis to procure evidence.

In Section 5, the functionality of the high-level interpretation system is
explained in some detail. The high-level system is generic in the sense that
the available interpretation steps can generate all consistent interpretations
based on evidence of any degree of completeness, incorporating context infor-
mation at any conceptual level, and initiating feedback to lower-level image

analysis if required.



Section 6 presents the results of the feedback example and provides ar-
chitecture details about the implemented system SCENIC.

Section 7 finally provides a summary and an outlook on future work.
Throughout this contribution we shall present examples providing proof-of-

concept and demonstrating the results of the implemented system.

2 General Approach

In this section we explain the rationale for modelling scene interpretation
as logical model construction and show how this leads to a system architec-
ture where high-level hypotheses connect to image analysis procedures via a
middle layer which mediates between hypotheses and evidence.

It was first shown by Reiter and Mackworth [18] and later elaborated in
[20], that, under certain assumptions, scene interpretation can be formulated
as a (partial) model construction task. In general, to construct a logical
model means to construct a mapping from constant symbols and predicates
of a symbolic language into the corresponding entities of a domain such that
all predicates become true. In scene interpretation tasks, the domain is
usually the real world, the constant symbols denote scene elements, objects
and higher-level entities determined by a vision system, and the predicates
express class membership and relations for such entities. Part of the map-
ping is determined by low-level scene analysis which connects symbols to
real-world scene entities. The remaining part is constructed in terms of hy-
potheses about the scene and represented by the corresponding symbols as
place-holders. Accordingly, from a logical point of view, scene interpreta-
tion is the construction of a symbolic description consistent with conceptual
knowledge about the world and concrete knowledge about the scene, the
latter comprising sensor-based evidence and context information.

As a consequence of the model construction paradigm, the interpretation
process naturally leads to the formation of hypotheses originating from con-
ceptual knowledge rather than evidence. In its extreme form it can be called
“controlled hallucination”, a term attributed to the British vision pioneer

Max Clowes. In a compositional concept hierarchy, high-level hypotheses
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Figure 1: Structure of the scene interpretation system with compositional
hierarchy, middle layer and image processing modules (IPMs).

may kick off a cascade of lower-level hypotheses down to the level of sym-
bolic primitives (see Figure 1) - this is the origin of feedback.

The middle layer is what is often called the signal-symbol interface. In our
architecture, its task is to generate view hypotheses from evidence generated
by image processing modules (IPMs), to assign evidence to view hypotheses
generated top-down, and to trigger IMP activities if needed. The capability
of the middle layer to control image analysis by high-level hypotheses is at
the core of feedback processing in our system architecture.

In the following sections, the three layers of the system architecture will
be described in more detail. Examples will be taken from the domain of
man-made structures which is studied in the EU-funded project eTRIMS.
The scene interpretation system SCENIC has the task to interpret images

using these learnt concept descriptions.



3 Low-Level Image Analysis

In this section we describe the AdaBoost image processing module (IPM)
as an exemplary low-level IPM for generating symbolic scene primitives and
accepting top-down requests for feedback processing.

The AdaBoost IPM uses Haar-like features in scale-space to train classi-
fiers to detect appearances of different objects from the domain ontology. It
works on rectified grey-scale images and provides confidence-rated bounding
rectangles for all detected objects in the image. The classifiers are trained
using supervised learning, where positive examples are shown to the system
and negative examples are automatically generated. Thus, the typical ap-
pearance of an object is learnt and can be used to detect other objects of
similar appearance.

The detector can be controlled by several parameters: region of interest
(ROI), sensitivity and image scale. The ROI limits the processing to part
of the image. This cuts down the processing time, but it can also result
in a different alignment of the scale space as compared to unconstrained
processing, giving a different set of Haar features. The sensitivity parameter
can be changed to allow for accepting weaker evidence. This is especially
useful alongside a ROI setting based on a high-level hypothesis. The image
scale parameter is a rough measure of how large the objects in the image are,
and can be used to filter out results which are too small or too large.

The AdaBoost IPM features a standard interface provided by SCENIC, so
it can be replaced by, or used with, other image processing modules offering

different functionality.

Experiment We used an AdaBoost-trained detector for T-style windows.
The output of the classifier is shown in Figure 2. The results of the low-
level detection are passed on to the middle layer as a basis for a symbolic
description of the image. Further down, we shall describe how the input
from the high-level interpretation module is passed down to the AdaBoost

detector to refine its results and find previously undetected objects.
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Figure 2: Evidence created with the AdaBoost Image Processing Module.
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4 Middle Layer

The middle layer acts as an interface between the image analysis and in-
terpretation layers. Its main tasks are generating symbolic primitives from
low-level evidence, confirming or refuting high-level hypotheses, and initiat-
ing low-level activities from high-level hypotheses. The combination of these
tasks allows the scene interpretation system to operate in a feedback loop as
originally proposed by Kanade [13] almost three decades ago.

Providing symbolic input to the interpretation layer is a bottom-up step
which matches low-level inputs (referred to as “evidence”) to instances of
high-level concepts in the knowledge base (referred to as “views”). Currently,
the AdaBoost IPM provides pre-classified evidence, with classes from the
domain ontology. The middle layer, however, has a more general design
and also accepts typified evidence (based on shape, colour and patch-based
evidence) which is then mapped into views of object classes.

Confirming and refuting high-level hypotheses is a mediating step which
takes a hypothesis from the interpretation layer and attempts to match it to

available evidence, possibly taking occlusion into account. The matching is



done based on the position, size, shape, colour, suggested object class from
the low-level, and any further information available about the hypothesis
in the knowledge base. The availability of this information depends on the
choice of the low-level module. In the case of the AdaBoost detector described
in the previous section, the matching is based on the position, size and the
object class suggested by the IPM (i.e. window).

If there is sufficient evidence for the existence of the hypothesised object at
the given position in the image, the hypothesis is confirmed, and the evidence
features are passed on to the interpretation layer. In the case of negative
evidence (e.g. in terms of a wall where a window is expected) the hypothesis
is refuted. If this happens, a conflict is generated in the interpretation layer
and backtracking occurs.

If a hypothesis cannot be confirmed or refuted based on the available
evidence, the low-level image analysis algorithm can be run again, with the
ROI provided by the hypothesis and possibly changed parameters in order to
look more closely for partial or weak matches. This is the feedback loop which

can find new evidence in the image with the help of high-level predictions.
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Figure 3: Views created from filtered evidence.
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Experiment In our experiment, the middle layer receives evidence from
the AdaBoost window detector and creates views from evidence items with
a high confidence value. It then passes these views to the interpretation
layer (see Figure 3). Once the interpretation layer creates its own view
hypotheses, the middle layer tries to match these to existing evidence. If
there is insufficient evidence to confirm a hypothesis, it starts low-level image
analysis with updated parameters and a specific ROI. The new evidence is
used to update features for the hypothesised views, which then are passed

back to the interpretation layer, closing the loop.

5 High-Level Interpretation

The goal of high-level interpretation is to create a semantic description of
the scene. It uses two inputs: (i) the knowledge base consisting of concepts
about possible aggregates and their parts, including constraints among them,
and (ii) views created by the middle layer from evidence delivered by image
processing modules. The goal of the high-level interpretation process is to in-
stantiate concepts of the knowledge base (i.e. to create a model), by checking

for which concepts the relevant attributes and constraints are fulfilled.

5.1 Conceptual Knowledge

The conceptual knowledge base implicitly represents all scene interpretations.
Each concept is described by attributes with value ranges or value sets, con-
straints between attributes and relations to other concepts. Spatial attributes
representing the potential position and size of the scene objects in terms of
ranges are of primary importance. They are represented as constraints which
are automatically adjusted as new evidence or related hypotheses restrict the
attribute values.

All concepts are organised in a compositional hierarchy where aggre-
gate concepts are related to their parts and vice versa, down to the level
of symbolic primitives. Typical aggregates in our domain are balcony and

window-array; typical primitives are railing and door. Currently, such
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concepts are learnt from negative and positive examples. Concepts are also

organised in specialisation hierarchies.
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Figure 4: SCENIC upper model with observables (right) and real-world en-
tities (left), both are connected via the has-view relation and further struc-
tured via has-part and has-specialisation.

The types of concepts for describing scenes are represented in an upper
model and domain-related concepts in a domain-specific model, which is a
model of building facades in our experiment (see figures 4, right). The upper
model is structured into two parts: concepts representing real-world enti-
ties (real-world-entity) and concepts representing the evidence objects
generated by sensory equipment (observables).

Concepts real-world-entity and view-concepts are related through
the relation has-view. For single images, this is a one to one relation which
connects the conceptual description of a real-world entity, e.g. a window, to
the conceptual description of its view, e.g. a window-view. This relation

also maps between world coordinates and image coordinates.

Experiment In our experiment window arrays are detected using the window-

array concept which is specified by the following information:
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Number of parts is [3 to inf].

A1l parts have type window.

All parts have similar y-position.

Any two neighbouring parts have similar distance.

A1l parts have similar height.

5.2 The High-level Interpretation Process

During the high-level interpretation process concepts have to be instantiated
and possible values have to be selected for each attribute or relational pa-
rameter. This is done automatically through constraint propagation or by
calling compute procedures.

The order of these decisions is crucial for an efficient search process. It is
controlled by declaratively represented control knowledge, lacking probabilis-
tic guidance in the current state of implementation. The order of activities
induced by the control knowledge is given below for one feedback cycle and

illustrated with the window array example.

1. Selecting a top-level scene aggregate A scene aggregate (e.g. facade-
scene) is selected interactively as a goal of the interpretation process. An
interpretation will be completed if instantiations for all objects in obligatory
relations to this aggregate are determined, in particular for the descendants
of the compositional hierarchy. The interpretation system is also initialised

with information relating image coordinates to world coordinates.

2. Starting from given views in a bottom-up manner An appro-
priate real-world entity is created for each given view following the relation
view-of. Furthermore, all aggregates are created in a bottom-up manner
which follow uniquely from given real-world entities. In this phase, instances
of the window-array concept are created, when three windows exist which

fulfil the window-array constraints.

3. Top-down generation of hypotheses The aggregates created in
Phase 2 trigger the creation of hypotheses for not yet instantiated parts
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(other aggregates or primitive objects). For example, if window arrays have
been identified which can be enhanced with windows in addition to already
instantiated windows, such new windows are searched at appropriate posi-
tions inferred from the established windows. When searching for parts, es-
tablished parts are preferred for integration and new parts are hypothesised

only if needed.

L3808 S

Figure 5: Hypothesised window-arrays with four additional window hypothe-
ses.

4. Backtracking If constraints for a hypothesised entity cannot be ful-
filled, a conflict occurs. It is resolved by backtracking to a certain decision
made ealier and changing that decision. For example, if it turns out that
a hypothesised window cannot be within the computed position range, e.g.
because there is no facade, the system can backtrack to the decision where

the window had been hypothesised.

5. Hypothesising views After inferencing hypothesised objects in the

preceding phases has ended, views with image coordinates are created for
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each hypothesised scene object and passed to the middle layer for further

processing.

Experiment Figure 3 shows the views which are the input for the high-
level interpretation. From this input, corresponding instances of type window
are created. Next, the interpretation process tries to identify window arrays.
When three windows fulfil the constraints of the window array concept, a
window-array hypothesis is instantiated. If there are gaps in the window
array, which can be filled with further windows, i.e. if gap < height + 2 X
distance, new window hypotheses are created. The example shows four new
window hypotheses created this way. They reflect the conceptual knowledge
that, if several windows with the same size, y-position, and distance are
established by an IPM and there are gaps of the proper size, then there

should be further windows (see Figure 5).

6 Final Feedback Results and Software Sys-
tem

The high-level interpretation process creates hypotheses about potential ob-
jects including their properties, like position and shape, represented by uncer-
tainty ranges and sets of alternative values. These hypotheses describe real-
world objects and their real-world coordinates, which need to be mapped onto
the image by creating corresponding view hypotheses. These expected views
provide feedback for image analysis and restarting the IPMs. In our experi-
ment, hypothesised windows of a window array have the effect of restarting
the AdaBoost IPM with changed sensitivity options and focussed on specific
ROIs, resulting in new evidence for potential windows. The feedback results
are shown in Figure 6: three new correct window evidences in regions where
no window has been recognised in the first run of the IPM (first three from
left) and one new false window evidence in the wall area on the right. This
feedback result confirms all window hypotheses generated by high-level inter-
pretation. It would require an improved window IPM or an additional IPM

for recognising walls to correct this low-level mistake.
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Figure 6: Result after restarting the low-level IPM with a hypothesised region
of interest and increased sensitivity.

This example of feedback between high-level interpretation and low-level
analysis demonstrates the main strength of this approach. Two kinds of
knowledge sources join forces: the low-level IPMs which incorporate knowl-
edge about interesting evidence (e.g. window evidence), and the high-level
interpretation system with its knowledge about interesting aggregates (e.g.
window arrays). In our implementation, the feedback cooperation of these
knowledge sources can be compared to a dialogue, for example:

Low-level: “Here should be a window w of size x.”
High-level: “To the left and right of w are larger windows of size y, thus w

should also have size y.”

Software System The implemented system SCENIC consists of five sys-
tem parts connected via remote procedure calls' (see Figure 7). This enables
us to plug in different low-level algorithms and allows for distributed opera-

tion among several computers in a network.

Lwww.amlrpe.com
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Figure 7: Overview of SCENIC’s modules.

in Figure 7).

language [8] enabling n-ary constraints on the concept level.

GUI/Knowledge Management The GUI has the following tasks: inter-
active control of the processing levels (image analysis, middle layer, high-level
interpretation); presentation and depiction of results; management of distinct
versions of the knowledge base. The knowledge base is implemented as an
OW L? knowledge base and augmented with constraints (depicted as OW L.

The constraints are represented in a proprietary constraint

Image Analysis Image analysis can be performed with distinct types of

I[PMs or manually by annotating images. Currently we use the IPM described

2Web Ontology Language, www.w3.org/TR/owl — ref/
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in Section 3 and manually annotated LabelMe images®. The results of image

analysis are represented using an extended LabelMe format.

Middle Layer The middle layer has access to the conceptual knowledge
base in order to map IPM output to views which are individuals of view
concepts defined in the conceptual knowledge base. The middle layer has
also access to the repertoire of IPMs and can select an IPM based on the

type of evidence which is required.

Interpretation The interpretation module converts the OW L knowledge
base and the input received from the middle layer into internal representa-
tions of the structure-based configuration system KONWERK [21, 11, 9, 8, 3],
which is reused here for scene interpretation. KONWERK features an ex-
pressive concept language, a declarative control language, and inference ca-
pabilities based on specialisation relations and a powerful constraint system.
An interpretation result can be returned as an image alongside instantiated

concepts.

Learning The learning module is a separate module. It provides aggregate

concepts in the form of augmented OW L concepts.

7 Summary and Future Work

In this deliverable we have presented a generic approach for combining low-
level image analysis and high-level interpretation so that feedback to low-level
analysis can be achieved. To this end, a middle layer has been introduced
which mediates between low-level evidence and high-level hypotheses. The
combination of low-level, middle-layer and high-level techniques has been im-
plemented in the system SCENIC. Results demonstrating the use of feedback
have been presented on an image with buildings. The potential of feedback
supported by this architecture, however, goes beyond the situation demon-

strated by the example. Feedback could help to implement a coarse-to-fine

3labelme.csail .mit.edu
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strategy, with fine-grained analysis only where required, or it could allow

image analysis bounded by a high-level focus.

In future work, we shall integrate further IPMs for recognising other prim-

itive objects, e.g. window-panes, but also unclassified evidence which will

then have to be classified by invoking high-level knowledge. The conceptual

knowledge base will be further extended by learnt concepts. Furthermore, a

probabilistic model for the compositional concept hierarchy will be integrated

as a preference measure for interpretation steps.
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