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Abstract

We first review grammar approaches in the literature. The review
shows the notion of two-dimensional grammars is not stabilized yet, since
it is understood differently by various authors. Moreover, there are not
too many successful computer vision applications based on 2D grammars.

Then, we compare two-dimensional grammar approach to other type of
structure modeling, the labeling framework under which we implemented
a windowpane detection task. The labeling is similar to 2D grammars to
some extent, since it also strongly restricts a possible solution. However,
there are principal differences between these two approaches leading to
their different properties.

1 Introduction

Modeling the structure of the system, i.e. modeling the relations among individ-
ual sub-parts, improves the posedness of tasks like recognition, segmentation,
detection compared to modeling individual sub-parts independently. This is the
fundamental motivation for syntactical pattern recognition [10]. In our consid-
erations, the sub-parts may be regions in the image corresponding to real world
objects. The simplest sub-parts are defined in pixel-level, where each individual
pixel has its semantic meaning. Or the sub-parts are larger image regions which
may or may not have some hierarchical structure.

One of the basic tool of syntactic pattern analysis is the grammar. The
grammar describes a language which represents a possible system configura-
tion. A typical task is to decide if a string representing estimated configuration
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belongs to the language induced by the grammar. This task is called the exact
matching or simply parsing. Or, in the stochastic generalization, the task is to
find the closest string belonging to the language induced by the grammar given
a sequence of observations. This is called the best matching task.

Although one-dimensional grammars generating strings are nowadays well
established, this is not the case of two-dimensional grammars. An image has a
natural 2D topology, and cannot be easily handled by one-dimensional string
description. Therefore various authors defined several kinds of 2D grammars
which differ by allowed form of terminal and non-terminal symbols, and pro-
duction rules, this is e.g. [17, 24, 7]. The problem is with the algorithms for
solving the parsing or best matching task in the generalized two-dimensional
grammars. Often, the algorithms are not known. Even worse, it is known that
these task are NP-complete for certain grammars. In [20], there are defined 2D
grammars which are provably solvable.

Schlesinger in [21, 22] defines a context-free two-dimensional grammar as a
direct generalization of a context-free one-dimensional grammar in the Chomsky
normal form, see Sec. 2 in more details. They propose to use a straightforward
generalization of Cocke-Younger-Kasami (CYK) algorithm [12] for both pars-
ing and best matching task. A successful application of this approach is their
recognition of printed notes [23].

Another application of 2D grammars is [1], where facades of modern build-
ings are interpreted using combined Bayesian model from stochastic context-free
grammar and MCMC sampling to approximate the posterior given an image.

Two-dimensional grammars are successfully used in computer graphics for
automated synthesis of realistic building/city models [18]. But, this is rather
orthogonal, since we are interested in the inverse process, image analysis.

Another possibility to model the structure offer Markov Random Fields [26].
The individual sub-parts are in unknown (hidden) state, which is expressed
by a set of possible labels assigned to the sub-parts. The sub-part labels are
interconnected with compatibility edges which express allowed neighbourhood
configuration, i.e. a likelihood the adjacent labels appears together. The task
is to find the labeling which is the most probable given the observations.

Such problems are studied in e.g. [16, 6], and in [25, 5] on the pixel-level.
Finding the MAP labeling leads to a discrete optimization task which is NP-
complete in general. There are solvable sub-classes [9], which depends on the
problem topology, on the number of labels, on the structure of the set of pairwise
constraints, and on the properties of the pairwise potential functions (submod-
ularity) [14]. There exists approximate algorithms which are often usable in
practice, e.g. [8, 15, 13, 25].

2 Comparison of grammars and labeling

In this section we compare the elementary properties of the grammar and label-
ing approaches. First, we will briefly explain both of them. An equivalence of
(classical) one-dimensional stochastic grammars and hidden Markov models is
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discussed in [11], but a generalization for two-dimensional case has never been
studied in literature, as far as we know.

2.1 Schlesinger’s two-dimensional grammars

Schlesinger [21, 22] defines two-dimensional context-free grammar as a direct
generalization of a context-free grammar, so the grammar G is

G = 〈X, K, k0, Ph, Pv, Pr〉, (1)

where X is the set of terminal symbols, K is the set of non-terminal symbols,
k0 ∈ K is the start symbol (axiom), Ph ⊂ K ×K ×K is the set of horizontal
concatenation rules of the form A → B|C, Pv ⊂ K×K×K is the set of vertical
concatenation rules of the form A → B

C, and Pr ⊂ K × (K ∪ X) is the set
of renaming (substitution) rules of the form A → x or A → B. The symbols
A,B,C ∈ K are non-terminals and x ∈ X is a terminal symbol. All the sets
here are finite.

The terminal symbols may be either image pixels [22] or larger image re-
gions [23]. All rules may be additionally associated with a penalty for its usage
which creates a stochastic extension of the grammar. Then penalties associ-
ated with rules, where terminal symbols are renamed to their non-terminals, is
determined based on data, i.e. a kind of distance of the observation (current
image pixel or region) to the ideal etalon representing the non-terminal symbol.
Penalties of other rules reflect an allowed derivation and the preference on their
usage.

Schlesinger [22, 23] proposes to use a direct generalization of the Cocke-
Younger-Kasami (CYK) algorithm [12] for both parsing and best matching task.
The algorithm uses a bottom-up strategy to explain the input by the grammar.
In 1D case, it subsequently considers, i.e. associates with possible rules, every
substring of length 1, then of length 2 and so on, until the string of the full
length is assigned to the axiom symbol k0 or not. The basic idea of the 2D
generalization is that the 2D image is processed in such a way that sub-images
are processed in an order given by one-dimensional sequence determined by the
inclusion relation. It means, first it considers sub-images (1 × 1), the images
(2 × 2) are considered after all their sub-images, (2 × 1) and (1 × 2), were
considered, and so on until the entire image of the full size (m× n) is assigned
to the axiom symbol k0 similarly as the original algorithm. The algorithm is
described in [22], page 486 and its complexity is O

(
(m2 + n2)(m + n)

)
.

Example In a few following paragraphs, we will show an example of two-
dimensional grammar generating simple facade images, like the one in Fig. 1.
This is a binary image, since the grammar we will construct will be crisp, but a
generalization to a stochastic grammar is possible, as discussed above.

The grammar construction is the following. The F is an starting non-
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Figure 1: Simple facade image F.

terminal symbol axiom and

F → N
F1

,

F1 → R
F

,

F → N,

(2)

where F consists of blank rectangle N (representing a wall) vertically concate-
nated with sub-facade F1, Fig. 2(a). Then recursively, the sub-facade F1 is a
row of windows R, Fig. 2(b), vertically concatenated with the facade F and to
terminate we substitute F to N, as the blank wall is a facade too.

The blank rectangle is generated recursively by

N → N
N

,

N → N|N,

N → n,

(3)

where n is a terminal symbol representing a white pixel, or in a stochastic version
a likelihood that the pixel belongs to the wall (not to window).

Similarly to the facade F construction, the row of windows R is generated
by

R → N|R1,

R1 → W|R,

R → N,

(4)

where R1 is a sub-row of windows, Fig. 2(c). Symbol W correspond to a window.
We can have a simple window consisting of a single windowpane P , which is a
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(a) F1

(b) R

(c) R1

Figure 2: Non-terminal symbols.

black rectangle

W → P,

P → P
P

,

P → P|P,

P → p.

(5)

The p is a terminal symbol representing a black pixel, or in a a stochastic version
a likelihood that the pixel belongs to the windowpane.

The window W could be also more complex window consisting of several
windowpanes and a grammar for this composition could also be constructed.
Alternatively, the symbol W may be set as a terminal symbol and we could
construct a classifier which would decide (or assign a likelihood in a stochastic
version) whether a sub-image is a window or not. Such a classifier might also
be based on the random field formulation.

The above example is not a solution of the facade interpretation problem in
any case. It is intended to demonstrate a construction of the two-dimensional
grammar.

2.2 Labeling problem

In this section we use the terminology from [9, 25]. The labeling problem is a
triplet

L = 〈P,X,g〉, (6)

where P = (T,E) is called the problem graph. It defines the topology of the
problem. Its vertices T are called objects. An object t′ ∈ T is a neighbour of
object t ∈ T if there exist an edge e = (t, t′) ∈ E. The objects may be either
pixels (then a natural 4-neighbourhood topology is considered), or larger image
regions with more complicated topology.
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Each object t ∈ T is associated with a set of labels X representing its possible
state. The elements of g are node qualities gt(x) and edge qualities gtt′(x, x′).

The node qualities gt(x), i.e. a quality of object t ∈ T is in the state x ∈ X,
are determined by the agreement of data (observation) with the object state.
The qualities gtt′(x, x′), i.e. a quality that object t ∈ T is in the state x ∈ X
while its neighbour t′ ∈ T is in the state x′ ∈ X, are determined by the prior
model creating the structure.

The task of the max-sum labeling problem L is to find

x∗ = arg max
x∈X|T |

∑
t

gt(xt) +
∑
t,t′

gtt′(xt, x
′
t), (7)

which means to find a (hidden) state of all objects, i.e. to label all objects, such
that this labeling is optimal with respect to (7).

The problem (7) is generally NP-complete. There are solvable subclasses,
polynomial algorithm exists for cases: e.g. the binary labeling |X| = 2, this can
be solved by max-flow/min-cut algorithm [2]; the problem graph P is a tree (has
no cycles), this can be solved by dynamic programming or belief propagation
algorithm [19], or edge qualities have a special form [9]. For complementary
problems, there exist approximate algorithms [8, 15, 13, 25].

The grammar approach and the labeling approach have a lot in common.
They both allow to model a structure, since both of them induce a language. The
solution is then strongly restricted to fulfill the prescribed structure model. In
case of grammars, this is due to rules Ph, Pv, Pr, and in the case of labeling, this
is due to compatibility edges gtt′(x, x′). Infinite value of gtt′(x, x′) ∈ {−∞,∞}
makes certain configuration of neighbouring labels to be {forbidden, obligatory}
respectively, similarly to crisp (deterministic) grammars where all rules are al-
lowed without a penalty.

When the grammar is stochastic, the rules have associated penalties for their
usage in derivation. These penalties are analogical to compatibility edge qual-
ities, where finite values represents the preferred rules or preferred neighbour-
hood configuration. This forms the prior model which expresses the preference
on the structure of the result.

There is also a direct analogy to the penalty assigning a symbol to an obser-
vation in the lowest level in the grammar derivation and a node quality gt(x).
This reflects an agreement of the data to the object state represented by the
grammar symbol or the label.

We showed in [5] the max-sum labeling is equivalent to finding the most prob-
able MAP labeling in the Bayesian formulation. From the considered analogies
it seems that a similar Bayesian framework should be incorporated into gram-
matical derivation as well.

Obviously, the formulations based on 2D grammars and on labeling are not
equivalent in general. In Fig. 3, there is an example of the image for which
we cannot construct a 2D-grammar as above. But we can formulate a label-
ing problem for it which accepts a general set of non-overlapping axis-parallel
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Figure 3: Example of an image which cannot be generated by the above 2D
grammar, but can be solved in a labeling formulation.

rectangles, see Sec. 3. Presumambly, equivalence of two formulations holds for
certain problems only.

However, there are also principal differences. Having the grammar, we can
trivially generate (synthetize) images simply by applying rules from the distri-
bution given by the penalties. Unfortunately, this is impossible in the case of
the labeling formulation. Generating labeled objects subsequently from already
labeled neighbours may lead to a conflict. This is due to a cyclic nature of the
problem graph P .

On the other hand, when we have an input where all objects are labeled
or all of them have assigned a symbol in the grammar, the task is to decide
whether this is allowed. This problem is trivially solvable in case of labeling.
We evaluate the energy term in (7). The value is proportional to a probability
that the given labeling is a correct solution. If its value higher than −∞, the
labeling is allowed. In case of grammars, we have to run the parsing algorithm
to decide.

The most important difference is in the complexity of the algorithms solving
the best matching task (in case of grammars) and max-sum labeling task (7)
(in case of labeling). The labeling problem (7) is generally NP-complete while
the grammatical formulation is solvable. This is interesting, since it seems
that some problems expressed in the labeling framework can be equivalently
formulated using the 2D grammar. If it is really possible to construct equivalent
problems, this would mean that there exists a subclass of labeling problems
which is solvable by polynomial algorithms. The important open question is
how to determine this class of labeling problems which are reduceable to an
equivalent grammatical formulation and additionally what is the algorithm for
this reduction.
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3 Windowpane detection based on MAP
labeling

We designed a detector of windowpanes based on the maximum aposteriori
labeling. This is the paper [5], which is attached. We show there that modeling
the structure is important and has a large impact on segmentation results in
the comparison with a simple Potts model which is often used in segmentation
to support the homogeneity of segmented regions.

The document [3] describes an image processing module for windowpane
detection based on MAP labeling method. It shows how it is possible to incor-
porate the detector into the SCENIC system and reveals where there are points
for a potential feedback loop. Closing the loop would cause a mutual influence
of the higher level reasoning and the low level image processing, which should
be beneficial for the entire system.

The performance of the windowpane image processing module is studied
in [4].

4 Conclusion

In this paper, we showed the structure can be modeled by the two-dimensional
grammars and by the labeling formulation. Both approaches are very similar in
the sense they can formulate equivalent tasks for special problems. The funda-
mental difference is in the algorithm finding a solution of either problem. The
labeling formulation is NP-complete, while the grammars possesses a polyno-
mial algorithm. This is a theoretically interesting observation, which opens a
lot of questions on the description of class of labeling problems solvable by the
grammar and on the existence of a conversion algorithm. This requires further
investigation.

A short-time goal is to implement a windowpane detector based on two-
dimensional grammars and compare its properties to an implementation based
on the labeling formulation which we developed so far. Studying the differences
between the formulations in practice should bring more experience with the
problem and should help finding answers to the theoretical questions mentioned
above.

We believe that any results obtained as a result of this programme will have
impact beyond facade interpretation.
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