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Technická 2, 166 27 Prague 6, Czech Republic
fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz





Windowpane Detection based on Maximum
Aposteriori Probability Labeling
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Abstract

Segmentation of windowpanes is formulated as a task of maxi-
mum aposteriori labeling. Assuming orthographic rectification of the
building facade, the windowpanes are always axis-parallel rectangles
of relatively low variability in appearance. Every image pixel has one
of 10 possible labels, and the adjacent pixels are interconnected via
links which defines allowed label configuration, such that the labels
are forced to form a set of non-overlapping rectangles. The task of
finding the most probable labeling of a given image leads to NP-hard
discrete optimization problem. However, we find an approximate so-
lution using a general solver suitable for such problems and we obtain
promising results which we demonstrate on several experiments.

Substantial difference between the presented paper and state-of-
the-art papers on segmentation based on Markov Random Fields is
that we have a strong structure model, forcing the labels to form
rectangles, while other methods does not model the structure at all,
they typically only have a penalty when adjacent labels are different,
in order to make resulting patches more continuous to reduce influence
of noise and prevent over-segmentation.

1 Introduction

Markov Random Fields (MRFs) have been used in image analysis for a long
time [15]. There are many papers on image segmentation using MRFs,
e.g. [14, 7]. The spatial relationships of pixels in the image domain is of-
ten modeled by the Potts model [2]. It means there is a zero penalty for
adjacent pixel having the same label and a constant penalty if the adjacent
pixels have different labels. This prior model reflects a natural assumption
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on the segmentation to be locally homogeneous. The homogeneous patches
have higher probability to become a part of the solution.

On the other hand, the Potts model cannot incorporate any stronger
assumption on the shape of the patches, i.e. on the structure of the segmen-
tation. In this paper, we make an explicit requirement for the shape of the
patches to be segmented. This is done introducing a more complicated struc-
ture prior model, where pairwise transition probabilities between labels are
asymmetric. With 10 labels and such structure prior, we force the solution
to be a set of axis parallel non-overlapping rectangles, which represent win-
dowpanes. Similar structure prior models appeared in [13] to demonstrate
the functionality of the labeling solver.

The obvious drawback of the proposed approach is that we need more
labels compared to similar segmentation with Potts model. We are using
10 labels and the problem is NP-complete as a result. However, we will
show that an approximate algorithm will give an acceptable results and the
segmentation quality of the proposed method is superior to the method using
the Potts model.

Of course, there are several different methods to detect windows in the
facade images. For instance, in [10, 3] they have a parametric model of win-
dows. Changing the parameters (as width, aspect ratio, brightness, etc.)
using Markov Chain Monte Carlo sampling they try to generate the image
which is the most similar to the given image. In [1], they use stochastic
context-free grammars to represent a hierarchical regular structure of a fa-
cade. These approaches are very different from our simple formulation based
on segmentation.

The paper is structured as follows: The problem is formulated in Sec. 2.
Experimental validation on both synthetic data and images of real facades is
given in Sec. 3. The Sec. 4 concludes the paper.

2 Problem formulation

The image lattice is a finite set of pixels T , where we denote pixel t′ ∈
T an immediate 4-neighbour of pixel t ∈ T . Every pixel t ∈ T is in
one of states defined by the finite set of labels X. In our problem, X =
{E,I,L,R,T,B,TL,TR,BL,BR}, see Fig. 1.

There are rules defining the configuration of adjacent labels, which are
allowed, such that the labels always form a set of non-overlapping rectangles.
For instance, right to T only another T or TR is allowed, down to B only E
is allowed, etc.

The task is to find the most probable labeling given the image data, i.e.
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Figure 1: Labeled image. Image and the labeled image encoded in color (left)
and allowed configuration of labels (right), E - external label (represents a
facade), I - internal windowpane label, L,R,T,B are left, right, top, bottom
edge respectively and TL, TR, BL, BR are corners.

to find the labeling maximizing the posterior probability

x∗ = arg max
x∈X|T |

p(x|d), (1)

where x is the image labeling and d is the image data. Using the Bayes law,
and the assumption of independence, this leads to

x∗ = arg max
x∈X|T |

p(d|x)p(x)

p(d)
= arg max

x∈X|T |

∏
t

p(d|xt)
∏
t,t′

p(xt, xt′)
∏

t

p(xt), (2)

where the notation xt means the label x ∈ X at pixel t ∈ T . Please note that
p(xt) is not a marginal probability of p(xt, x

′
t). Their meaning is explained

below.
The term p(d|xt) reflects data agreement for label xt. The probability

distribution p(d|x) we call the image model. It is a probability distribution
function of appearance for each individual labels x ∈ X, e.g. the window-
pane label (I-label) is typically of dark or glossy color. This is learnt from
examples.

The term p(xt, xt′) is a probability of coocurence of neighbouring labels.
The probability distribution p(x, x′) we call the structure model, it represents
the adjacent label compatibility, i.e. the rules that generate a 2D language
of non-overlapping rectangles.

The last term p(xt) is a prior probability of the label.

Applying logarithm to (2), we obtain the max-sum labeling problem

x∗ = arg max
x∈X|T |

∑
t

gt(xt) +
∑
t,t′

gtt′(xt, xt′), (3)

where
gt(xt) = log p(d|xt) + log p(xt),

gtt′(xt, xt′) = log p(xt, xt′).
(4)
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Figure 2: Illustration of the labeling problem.

The illustration of the labeling problem is in Fig. 2. There is an image. Pixels
t ∈ T are sketched as squares, each containing a finite set of labels x ∈ X
creating nodes of the underlying graph. The labels between adjacent pixels
are interconnected via edges. Each node has assigned a node quality gt(xt),
each edge has assigned an edge quality gtt′(xt, xt′), see (4). The task of the
max-sum labeling (3) is to select one of labels at each pixel that maximize
the sum of node qualities and corresponding edge qualities for the entire
image. A typical maximizer nodes and corresponding edges are marked by
color. Note, that the graph of our problem is much larger than in Fig. 2in
the sense of number of pixels and number of labels (we have 10 labels).

The problem (3) is NP-complete in general. There are solvable sub-
classes [6], e.g. the number of labels is 2, or the underlying graph does
not contain cycles and others. But, our task does not belong to any of
the solvable sub-classes and remains NP-complete. However, there exist ap-
proximate algorithms which finds a sub-optimal solution, e.g. (loopy) be-
lief propagation [11, 4], Kolmogorov’s TRW-S algorithm [8], max-sum diffu-
sion by Kovalevsky and Flach [9, 5], Schlesinger’s linear programming relax-
ation [12, 13].

2.1 Implementation

We use a very simple image model p(d|x) in order to be easily learnable from
exemplar images. For each label separately, we learn a probability distribu-
tion of the pixel color c = (r, g, b) as red, green, blue intensity channels

p(d|x) = p(c|x) = p(r, g, b|x), (5)

where the p(r, g, b|x) is assumed to be of Gaussian distribution. The mean
value vector and covariance matrix are estimated from annotated training
images.
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The structure model p(x, x′) was set in order to create the language of
axis-parallel non-overlapping rectangles. There are two types of transition
probabilities: horizontal ph(x, x′) where x′ is the neighbour of x to the right,
and vertical pv(x, x′) where x′ is the neighbour of x to down. Note that
p(x, x′) 6= p(x′, x) and ph 6= pv. The asymmetry of the label coocurence is a
necessary prerequisite for complex structure modeling.

The allowed horizontal left to right transitions are: (E,E), (E,TL), (E,L),
(E,BL), (I,I), (I,R), (L,I), (R,E), (T,T), (T,TR), (B,B), (B,BR), (TL,T),
(TR,E), (BR,E), (BL,B). The allowed vertical up to down transitions are:
(E,E), (E,TL), (E,T), (E,TR), (I,I), (I,B), (L,L), (L,BL), (R,R), (R,BR),
(T,I), (B,E), (TL,L), (TR,R), (BL,E), (BR,E), see Fig. 1 - right. The proba-
bilities p(x, x′) of listed allowed transitions are non-zero, the forbidden tran-
sitions has zero probability.

Probabilities p(x, x′) are estimated from labeled examples, as a relative
frequency of individual transitions (x, x′) ∈ X×X in all transitions appearing
in the labeled examples.

We used Werner’s implementation [13] of linear programming relaxation
based max-sum solver by Schlesinger [12], since it seems to give good results
for our problem, unlike the belief propagation [11, 4] which often oscillates
and max-sum diffusion [5, 9] which is very slow.

3 Experiments

We performed experiments on both simulated data and on images of real
facade.

3.1 Synthetic experiment

We use a synthetic gray-scale test image simulating a facade, Fig. 4. It
is 100 × 100 pixels containing 25 dark rectangles of intensity µ0 = 0, in
the light background of intensity µ1 = 1. We added independent Gaussian
noise with increasing standard deviation σ to both segments (rectangles and
background) independently. So, the statistical image model of the rectangles
and background segments is N(µ0, σ

2), N(µ1, σ
2) respectively.

In a repeated experiment, we measured an error rate, i.e. percentage of
pixels which were labeled incorrectly, as a function of noise level σ. Beside
the proposed method (full model, 10 labels), we measure the performance of
MRF segmentation with 2 labels and Potts model (simple model), the local
Bayes classifier - the Bayes decision incorporating prior probability of labels
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Figure 3: Labeling error rate as a function of noise level.

in each pixel independently (Independent Bayes) and thresholding with the
optimal threshold τ = 0.5.

The prior probabilities of the Bayesian classifier and the transition proba-
bilities of both simple and full prior model were estimated from ground-truth
labeling as relative frequencies of transitions. The parameters of the image
models were set σ = 0.2 and kept fixed throughout the experiment.

The results are in Fig. 3. The results are averaged from 10 random trials
and the plots have errorbars. The local decisions (thresholding and inde-
pendent Bayes) have worse performance than methods modeling pixel neigh-
bourhood relations (simple and full model). The independent Bayes decision
is slightly better than thresholding, since the prior probabilities of segment
does not differ much. The simple 2-label Potts model MRF segmentation
outperforms both local methods, which is a known fact in segmentation lit-
erature. The full 10-label model (proposed method) is the best here. The
reason is that it precisely models the structure of the segment. The force of
the full model allowing axis parallel non-overlapping rectangles has a large
impact here.

The segmentation results for σ = 0.3 and σ = 0.8 are in Fig. 4. The full
model is free of errors for σ = 0.3, unlike other methods. All methods except
for the proposed full model fail for noise level σ = 0.8. Notice the difference
between the simple and full model. Although the proposed methods does
a few errors for such a noise level, it performs much better than the simple
model.
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Figure 4: Results of the labeling. Labeling maps are color coded.

3.2 Real data

We run the proposed methods on several images of real facade. The images
were from 0.1 to 0.7 Mpx. Both image model and structure model were
learnt from a single facade image, Fig. 5-top image, with manually annotated
windowpanes. The model parameters were kept fixed for all images.

The CPU time for the proposed full model is less than 10 seconds per im-
age on C2 2.4 GHz, mostly depending on the scene complexity. The solution
for the simple 2-label model is also obtained by [13] in much shorter time.
Even faster solution of the 2-labeling problem can be obtained by Max-Flow
algorithm, which is polynomial and optimal for this problem.

We can see, Fig. 5 and 6, that most of the windowpanes were correctly
identified, despite the large variation in facade and windowpane color. The
are few missing windowpanes or false positive detection. The reason for that
is two-fold: (1) the actual image and structure model is wrong or imprecise,
or (2) the solution we obtained from approximate algorithm is not a global
optimum.

Comparison of results of full model and simple model is in Fig. 7. There
are labeling map for image 6-top right. We can see the full model forces
the windowpanes to be rectangles and helps reject regions which have the
appearance (the pixel color) same as truth windowpanes, but have not their
structure, e.g. railing, tree branches, shadows, which persists at simple model
results.
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Figure 5: Results on real facade images
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Figure 6: Results on real facade images
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Figure 7: Labeling maps.
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4 Conclusion

We showed that using the structure model of the region to be segmented
has a large impact on the quality of the segmentation results. We showed
experimentally on both synthetic and real data that the proposed full struc-
ture model (forcing rectangles) outperforms a traditional 2-label Potts model
which enforces continuity only without modeling the structure of the region
at all. Although our problem leads to NP-complete task, we show that solu-
tion obtained from approximate algorithm [13] is acceptable.

The paper does not aim to bring a perfect windowpane detector. Instead,
we wanted to present an interesting method which is based on a pure and
simple global formulation and whose solution is found by a general solver. Of
course, for a later practical usage of the windowpane detector there will be
necessary to take more care to image model and its learning. Some pre/post-
processing could also help to increase the performance.
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