|
|
|
Dataset: |
|
Benchmark data set of eTRIMS Image Database
Mar 31, 2009. Official release
with 60 annotated images
|
|
Journal Publications: |
- Čech, J. & ára, R.
Languages for Constrained Binary Segmentation Based on Maximum A Posteriori Probability Labeling
International Journal of Imaging Systems and Technology, John Wiley & Sons, Inc., 2009, Vol. 19(2), pp. 69-79
[pdf]
- Čech, J., Matas, J. & Perdoch, M.
Efficient Sequential Correspondence Selection by Cosegmentation
IEEE Transactions on PAMI, In Press. DOI 10.1109/TPAMI.2009.176.
[pdf]
- Drbohlav, O. & Leonardis, A.
Towards correct and informative evaluation methodology for texture classification under varying viewpoint and illumination
Computer Vision and Image Understanding, 2009
- Heesch, D. & Petrou, M.
Markov random fields with asymmetric interactions for modelling spatial context in structured scenes
Journal of Signal Processing Systems, Springer, 2009, Vol. 10.1007/s11265-009-0349-0
[pdf]
- Jahangiri, M. & Petrou, M.
Investigative Mood Visual Attention Model
Computer Vision and Image Understanding, Elsevier, (Under Review)
- ochman, J. & Matas, J.
Learning Fast Emulators of Binary Decision Processes
International Journal of Computer Vision, 2009, Vol. 83, pp. 149-163
[pdf]
- Wenzel, S., Drauschke, M. & Förstner, W.
Detection of Repeated Structures in Facade Images
Pattern Recognition and Image Analysis, 2008, Vol. 18(3), pp. 406-411
[pdf]
- Wenzel, S., Drauschke, M. & Förstner, W.
Detection and Description of Repeated Structures in Rectified Facade Images
Photogrammetrie, Fernerkundung, Geoinformation PFG, 2007, Vol. 7, pp. 481-490
[pdf]
|
Conferences Publications: |
- Bochko, V.A. & Petrou, M.
Recognition of structural parts of buildings using support vector machines
Pattern Recognition and Information Processing, PRIP2007
2007
[pdf]
- Čech, J. & ára, R.
Windowpane Detection based on Maximum Aposteriori Probability Labeling
Barneva, R. P. & Brimkov, V. (ed.)
Image Analysis - From Theory to Applications, Proceedings of the 12th International Workshop on Combinatorial Image Analysis (IWCIA'08)
Research Publishing Services, 2008, pp. 3-11
[pdf]
- Čech, J. & ára, R.
Efficient Sampling of Disparity Space for Fast and Accurate Matching
BenCOS 2007: CVPR Workshop Towards Benchmarking Automated Calibration, Orientation and Surface Reconstruction from Images
Omnipress, 2007
[pdf]
- Čech, J., Matas, J. & Perdoch, M.
Efficient Sequential Correspondence Selection by Cosegmentation
CVPR 2008: Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
2008, pp. 1020-1027
[pdf]
- Drauschke, M.
An Irregular Pyramid for Multi-Scale Analysis of Objects and their Parts
GbR'09
2009, pp. 293-303
[pdf]
- Drauschke, M. & Förstner, W.
Comparison of Adaboost and ADTboost for Feature Subset Selection
PRIS'08
2008, pp. 113-122
[pdf]
- Drauschke, M. & Förstner, W.
Selecting Appropriate Features for Detecting Buildings and Building Parts
21st ISPRS Congress
2008, pp. 447-452
[pdf]
- Grabner, H., ochman, J., Bischof, H. & Matas, J.
Training Sequential On-line Boosting Classifier for Visual Tracking
Borgefors, G. & Flynn, P. (ed.)
ICPR 2008: Proceedings of the 19th International Conference on Pattern Recognition
Omnipress, 2008, pp. 4
[pdf]
- Hartz, J.
Learning Probabilistic Structure Graphs for Classification and Detection of Object Structures
to appear in: Proc. of the of the International Conference on Machine Learning and Applications
2009
[pdf]
- Hartz, J., Hotz, L., Neumann, B. & Terzić, K.
Automatic Incremental Model Learning for Scene Interpretation
Proc. of the Fourth IASTED International Conference on Computational Intelligence
2009
[pdf]
- Hartz, J. & Neumann, B.
Learning a Knowledge Base of Ontological Concepts for High-Level Scene Interpretation
IEEE Proc. International Conference on Machine Learning and Applications,
Cincinnati (Ohio, USA), December 2007
[pdf]
- Heesch, D. & Petrou, M.
Learning Markovian dependencies from annotated images
IEEE Int'l Symposium Machine Learning in Signal Processing
2007
[pdf]
- Heesch, D. & Petrou, M.
Non-Gibbsian Markov random fields for contextual object recognition
British Machine Vision Conference (BMVC)
2007, Vol. 2, pp. 930-939
[pdf]
- Heesch, D., Tan, R. & Petrou, M.
Context first
Proc Int'l Workshop on Structural and Syntactic Pattern Recognition
2008
[pdf]
- Hotz, L.
Modeling, Representing, and Configuring Restricted Part-Whole Relations
Tihonen, J. (ed.)
Configuration Workshop, 2008
2008
- Hotz, L., Neumann, B. & Terzić, K.
High-level expectations for Low-level image processing
KI 2008: Advances in Artificial Intelligence
2008, Vol. 5243, pp. 87-94
[PDF]
- Jahangiri, M. & Petrou, M.
An Attention Model for Extracting Regions that Merit Identification
IEEE International Conference on Image Processing (ICIP), Cairo, Egypt
2009
[pdf]
- Jahangiri, M. & Petrou, M.
Fully Bottom-Up Blob Extraction in Building Facades
9th International Conference on Pattern Recognition and Image Analysis: New Information Technologies, Nizhni Novgord, Russia,
2008
[pdf]
- Korč, F. & Förstner, W.
Approximate Parameter Learning in Conditional Random Fields: An Empirical Investigation
Rigoll, G. (ed.). Pattern Recognition.
Springer, DAGM 2008(5096), pp. 11-20
[pdf]
- Korč, F. & Förstner, W.
Interpreting Terrestrial Images of Urban Scenes Using Discriminative Random Fields
Proc. of the 21st Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS)
2008
[pdf]
- Korč, F. & Förstner, W.
Finding Optimal Non-Overlapping Subset of Extracted Image Objects
Proc. of the 12th International Workshop on Combinatorial Image Analysis (IWCIA)
2008
[pdf]
- Kreutzmann, A., Terzić, K. & Neumann, B.
Context-aware Classification for Incremental Scene Interpretation
to appear in: Proc. Workshop on Use of Context in Vision Processing
2009
[pdf]
- Matas, J. & ochman, J.
Wald's Sequential Analysis for Time-constrained Vision Problems
Hutchinson, S. (ed.)
IEEE International Conference on Robotics and Automation, Workshops and Tutorials
2007, pp. 10
[pdf]
- Petrou, M.
Learning in Computer Vision: Some Thoughts
Rueda, L., Mery, D. & Kittler, J. (ed.)
Progress in Pattern Recognition, Image Analysis and Applications, 12th Iberoamericann Congress on Pattern Recognition, CIARP
Springer, 2007, Vol. 4756, pp. 1-12
[pdf]
- Petrou, M. & Xu, M.
The Tower of Knowledge Scheme for Learning in Computer Vision
Proceedings of the International Conference on Digital Image Computing: Techniques and Applications, DICTA 2007, 3-5
IEEE Computer Society, 2007, pp. 85-91
[pdf]
- ára, R.
Robust Correspondence Recognition for Computer Vision
Rizzi, A. & Vichi, M. (ed.)
COMPSTAT 2006: Proceedings in Computational Statistics of 17th ERS-IASC Symposium
Physica-Verlag, 2006, pp. 119-131
[pdf]
- ára, R. & Matousek, M.
FAIR: Towards A New Feature for Affinely-Invariant Recognition
ICPR 2006: Proceedings of the 18th International Conference on Pattern Recognition
IEEE Computer Society, 2006, Vol. 2, pp. 412-416
[pdf]
- ochman, J. & Matas, J.
Learning A Fast Emulator of a Binary Decision Process
Yagi, Y., Kang, S. B., Kweon, I. S. & Zha, H. (ed.)
ACCV
Springer, 2007, Vol. II, pp. 236-245
[pdf]
- Terzić, K., Hotz, L. & Neumann, B.
Division of Work During Behaviour Recognition - The SCENIC Approach
Schuldt, A. (ed.)
Workshop on Behaviour Monitoring and Interpretation (BMI-07, KI-07)
2007, pp. 144-159
[pdf]
- Terzić, K., Hotz, L. & ochman, J.
Interpreting Structures in Man-Made Scenes: Combining Low-Level and High-Level Structure Sources
To appear: International Conference on Agents and Artificial Intelligence
2010
- Terzić, K. & Neumann, B.
Integrating Context Priors into a Decision Tree Classification Scheme
International Conference on Machine Vision, Image Processing, and Pattern Analysis, to appear
2009
- Wenzel, S., Drauschke, M. & Förstner, W.
Detection of repeated structures in facade images (accepted/in print)
Proceedings of the OGRW-7-2007, 7th Open German/Russian Workshop on Pattern Recognition and Image Understanding. August 20-23, 2007. Ettlingen, Germany
2007
[pdf]
- Wenzel, S. & Förstner, W.
Semi-supervised incremental learning of hierarchical appearance models
21st Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS)
2008, pp. 399-404 Part B3b-2
[pdf]
- Wenzel, S. & Hotz, L.
The Role of Sequences for Incremental Learning
To appear: Second International Conference on Agents and Artificial Intelligence, ICAART2010
2010
- Xu, M. & Petrou, M.
Learning Logic Rules for Scene Interpretation Based on Markov Logic Networks
Asian Conference on Computer Vision (ACCV), Xi' an, China
2009
|
Other Publications: |
- ochman, J.
Learning for Sequential Classification
PhD-Thesis, Czech Technical University in Prague, 2009, pp. 75
[pdf]
- Drauschke, M.
Description of Stable Regions IPM
Technical Report, Department of Photogrammetry, University of Bonn, 2008(TR-IGG-P-2008-03)
[pdf]
- Drauschke, M.
Feature Subset Selection with Adaboost and ADTboost
Technical Report, Department of Photogrammetry, University of Bonn, 2008(TR-IGG-P-2008-04)
[pdf]
- Drauschke, M.
Multi-class ADTboost
Technical Report, Department of Photogrammetry, University of Bonn, 2008
[pdf]
- Hotz, L.
Frame-based Knowledge Representation for Configuration, Analysis, and Diagnoses of technical Systems (in German)
PhD-Thesis, University of Hamburg, Infix, 2009, Vol. 325
- Hotz, L., Neumann, B., Terzić, K. & ochman, J.
Feedback between Low-Level and High-Level Image Processing
Technical Report, Department of Informatics, University of Hamburg, 2007(FBI-B-278/07)
[pdf]
- Korč, F. & Förstner, W.
eTRIMS Image Database for Interpreting Images of Man-Made Scenes
Technical Report, Dept. of Photogrammetry, University of Bonn, 2009(TR-IGG-P-2009-01)
[pdf]
- Matas, J. & ochman, J.
Wald's Sequential Analysis for Time-constrained Vision Problems
Kragic, D. & Kyrki, V. (ed.)
Unifying Perspectives in Computational and Robot Vision
Chapter 5
Springer, 2008, Vol. 8, pp. 57-77
- Moeller, R. & Neumann, B.
Ontology-Based Reasoning Techniques for Multimedia Interpretation and Retrieval
In: Y. Kompatsiaris, P. Hobson (Eds.): Semantic Multimedia and Ontologies: Theory and Applications
Springer 2008, pp. 55-98
[pdf]
- Neumann, B.
Bayesian Compositional Hierarchies - A Probabilistic Structure for Scene Interpretation
Technical Report, Universität Hamburg, Department Informatik, Arbeitsbereich Kognitive Systeme, 2008(FBI-HH-B-282/08)
[pdf]
- Terzić, K. & Neumann, B.
Decision Trees for Probabilistic Top-down and Bottom-up Integration
Technical Report, Universität Hamburg, 2009(FBI-HH-B-288/09)
[pdf]
|
|