0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019 function sugr_show_Point_3D(x, name)
0020
0021 if nargin<2
0022 name = 'X';
0023 end
0024
0025 global type_name
0026
0027 f = sugr_get_isfinite_Point_3D(x);
0028 typ_no = x.type;
0029
0030 if f
0031 fprintf('\n%s: finite %s\n',name,type_name{typ_no})
0032 else
0033 fprintf('\n%s: infinite %s\n',name,type_name{typ_no})
0034 end
0035
0036 [e,Cee] = sugr_get_Euclidean_Point_3D(x);
0037 fprintf('\t\t\t%5.3f\t\t\t\t\t%5.3f %5.3f %5.3f\n', e(1),Cee(1,1), Cee(1,2), Cee(1,3))
0038 fprintf('\t%s_e =\t%5.3f\t\tCov_ee =\t%5.3f %5.3f %5.3f\n',name,e(2),Cee(2,1), Cee(2,2), Cee(2,3))
0039 fprintf('\t\t\t%5.3f\t\t\t\t\t%5.3f %5.3f %5.3f\n', e(3),Cee(3,1), Cee(3,2), Cee(3,3))
0040
0041 h = x.h;
0042 Chh = sugr_get_CovM_homogeneous_Vector(x);
0043 Crr = x.Crr;
0044 fprintf('\n\t\t\t%5.3f\t\t\t\t\t%5.3f %5.3f %5.3f %5.3f\t\t\t\t\t%5.3f %5.3f %5.3f\n', h(1),Chh(1,1), Chh(1,2), Chh(1,3), Chh(1,4), Crr(1,1), Crr(1,2), Crr(1,3))
0045 fprintf('\t%s_h =\t%5.3f\t\tCov_hh =\t%5.3f %5.3f %5.3f %5.3f\t\tCov_rr =\t%5.3f %5.3f %5.3f\n',name,h(2),Chh(2,1), Chh(2,2), Chh(2,3), Chh(2,4), Crr(2,1), Crr(2,2), Crr(2,3))
0046 fprintf('\t\t\t%5.3f\t\t\t\t\t%5.3f %5.3f %5.3f %5.3f\t\t\t\t\t%5.3f %5.3f %5.3f\n', h(3),Chh(3,1), Chh(3,2), Chh(3,3), Chh(3,4), Crr(3,1), Crr(3,2), Crr(3,3))
0047 fprintf('\t\t\t%5.3f\t\t\t\t\t%5.3f %5.3f %5.3f %5.3f\n', h(4),Chh(4,1), Chh(4,2), Chh(4,3), Chh(4,4))
0048
0049
0050