0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 function sugr_show_Point_3D(x, name)
0020 
0021 if nargin<2
0022     name = 'X';
0023 end
0024 
0025 global type_name
0026 
0027 f    = sugr_get_isfinite_Point_3D(x);
0028 typ_no   = x.type;
0029 
0030 if f
0031     fprintf('\n%s: finite %s\n',name,type_name{typ_no})
0032 else
0033     fprintf('\n%s: infinite %s\n',name,type_name{typ_no})
0034 end
0035 
0036 [e,Cee] = sugr_get_Euclidean_Point_3D(x);
0037 fprintf('\t\t\t%5.3f\t\t\t\t\t%5.3f %5.3f %5.3f\n',             e(1),Cee(1,1), Cee(1,2), Cee(1,3))
0038 fprintf('\t%s_e =\t%5.3f\t\tCov_ee =\t%5.3f %5.3f %5.3f\n',name,e(2),Cee(2,1), Cee(2,2), Cee(2,3))
0039 fprintf('\t\t\t%5.3f\t\t\t\t\t%5.3f %5.3f %5.3f\n',             e(3),Cee(3,1), Cee(3,2), Cee(3,3))
0040 
0041 h = x.h;
0042 Chh  = sugr_get_CovM_homogeneous_Vector(x);
0043 Crr  = x.Crr;
0044 fprintf('\n\t\t\t%5.3f\t\t\t\t\t%5.3f %5.3f %5.3f %5.3f\t\t\t\t\t%5.3f %5.3f %5.3f\n',                     h(1),Chh(1,1), Chh(1,2), Chh(1,3), Chh(1,4), Crr(1,1), Crr(1,2), Crr(1,3))
0045 fprintf('\t%s_h =\t%5.3f\t\tCov_hh =\t%5.3f %5.3f %5.3f %5.3f\t\tCov_rr =\t%5.3f %5.3f %5.3f\n',name,h(2),Chh(2,1), Chh(2,2), Chh(2,3), Chh(2,4), Crr(2,1), Crr(2,2), Crr(2,3))
0046 fprintf('\t\t\t%5.3f\t\t\t\t\t%5.3f %5.3f %5.3f %5.3f\t\t\t\t\t%5.3f %5.3f %5.3f\n',            h(3),Chh(3,1), Chh(3,2), Chh(3,3), Chh(3,4), Crr(3,1), Crr(3,2), Crr(3,3))
0047 fprintf('\t\t\t%5.3f\t\t\t\t\t%5.3f %5.3f %5.3f %5.3f\n',                                      h(4),Chh(4,1), Chh(4,2), Chh(4,3), Chh(4,4))
0048 
0049 
0050