Louis Wiesmann
Ph.D. Student Contact:Email: louis.wiesmann@nulligg.uni-bonn.de
Tel: +49 – 228 – 73 – 29 06
Fax: +49 – 228 – 73 – 27 12
Office: Nussallee 15, 1. OG, room 1.006
Address:
University of Bonn
Photogrammetry, IGG
Nussallee 15
53115 Bonn
Short CV
Louis Wiesmann is a PhD student at the Photogrammetry Lab at the University of Bonn since November 2019. He received his master’s degree at the Institute of Geodesy and Geoinformation in 2019.Research Interests
- SLAM
- Computer Vision
- Machine Learning
Awards
- Turbo-Preis 2019 of the DVW
Publications
2024
- L. Wiesmann, E. Marks, S. Gupta, T. Guadagnino, J. Behley, and C. Stachniss, “Efficient LiDAR Bundle Adjustment for Multi-Scan Alignment Utilizing Continuous-Time Trajectories,” Arxiv preprint, vol. arXiv:2412.11760, 2024.
[BibTeX] [PDF]@article{wiesmann2024arxiv, author = {L. Wiesmann and E. Marks and S. Gupta and T. Guadagnino and J. Behley and C. Stachniss}, title = {{Efficient LiDAR Bundle Adjustment for Multi-Scan Alignment Utilizing Continuous-Time Trajectories}}, journal = arxiv, year = 2024, volume = {arXiv:2412.11760}, url = {https://arxiv.org/pdf/2412.11760}, }
- L. Wiesmann, T. Läbe, L. Nunes, J. Behley, and C. Stachniss, “Joint Intrinsic and Extrinsic Calibration of Perception Systems Utilizing a Calibration Environment,” Ieee robotics and automation letters (ra-l), vol. 9, iss. 10, p. 9103–9110, 2024. doi:10.1109/LRA.2024.3457385
[BibTeX] [PDF]@article{wiesmann2024ral, author = {L. Wiesmann and T. L\"abe and L. Nunes and J. Behley and C. Stachniss}, title = {{Joint Intrinsic and Extrinsic Calibration of Perception Systems Utilizing a Calibration Environment}}, journal = ral, year = {2024}, volume = {9}, number = {10}, pages = {9103--9110}, issn = {2377-3766}, doi = {10.1109/LRA.2024.3457385}, }
- Y. Pan, X. Zhong, L. Wiesmann, T. Posewsky, J. Behley, and C. Stachniss, “PIN-SLAM: LiDAR SLAM Using a Point-Based Implicit Neural Representation for Achieving Global Map Consistency,” Ieee trans. on robotics (tro), vol. 40, p. 4045–4064, 2024. doi:10.1109/TRO.2024.3422055
[BibTeX] [PDF] [Code]@article{pan2024tro, author = {Y. Pan and X. Zhong and L. Wiesmann and T. Posewsky and J. Behley and C. Stachniss}, title = {{PIN-SLAM: LiDAR SLAM Using a Point-Based Implicit Neural Representation for Achieving Global Map Consistency}}, journal = tro, year = {2024}, pages = {4045--4064}, volume = {40}, doi = {10.1109/TRO.2024.3422055}, codeurl = {https://github.com/PRBonn/PIN_SLAM}, }
- D. Casado Herraez, L. Chang, M. Zeller, L. Wiesmann, J. Behley, M. Heidingsfeld, and C. Stachniss, “SPR: Single-Scan Radar Place Recognition,” Ieee robotics and automation letters (ra-l), vol. 9, iss. 10, pp. 9079-9086, 2024.
[BibTeX] [PDF]@article{casado-herraez2024ral, author = {Casado Herraez, D. and L. Chang and M. Zeller and L. Wiesmann and J. Behley and M. Heidingsfeld and C. Stachniss}, title = {{SPR: Single-Scan Radar Place Recognition}}, journal = ral, year = {2024}, volume = {9}, number = {10}, pages = {9079-9086}, }
- Y. Wu, T. Guadagnino, L. Wiesmann, L. Klingbeil, C. Stachniss, and H. Kuhlmann, “LIO-EKF: High Frequency LiDAR-Inertial Odometry using Extended Kalman Filters,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2024.
[BibTeX] [PDF] [Code] [Video]@inproceedings{wu2024icra, author = {Y. Wu and T. Guadagnino and L. Wiesmann and L. Klingbeil and C. Stachniss and H. Kuhlmann}, title = {{LIO-EKF: High Frequency LiDAR-Inertial Odometry using Extended Kalman Filters}}, booktitle = icra, year = 2024, codeurl = {https://github.com/YibinWu/LIO-EKF}, videourl = {https://youtu.be/MoJTqEYl1ME}, }
2023
- R. Marcuzzi, L. Nunes, L. Wiesmann, E. Marks, J. Behley, and C. Stachniss, “Mask4D: End-to-End Mask-Based 4D Panoptic Segmentation for LiDAR Sequences,” Ieee robotics and automation letters (ra-l), vol. 8, iss. 11, pp. 7487-7494, 2023. doi:10.1109/LRA.2023.3320020
[BibTeX] [PDF] [Code] [Video]@article{marcuzzi2023ral-meem, author = {R. Marcuzzi and L. Nunes and L. Wiesmann and E. Marks and J. Behley and C. Stachniss}, title = {{Mask4D: End-to-End Mask-Based 4D Panoptic Segmentation for LiDAR Sequences}}, journal = ral, year = {2023}, volume = {8}, number = {11}, pages = {7487-7494}, issn = {2377-3766}, doi = {10.1109/LRA.2023.3320020}, codeurl = {https://github.com/PRBonn/Mask4D}, videourl = {https://youtu.be/4WqK_gZlpfA}, }
- I. Vizzo, B. Mersch, L. Nunes, L. Wiesmann, T. Guadagnino, and C. Stachniss, “Toward Reproducible Version-Controlled Perception Platforms: Embracing Simplicity in Autonomous Vehicle Dataset Acquisition,” in Proc. of the intl. conf. on intelligent transportation systems workshops, 2023.
[BibTeX] [PDF] [Code]@inproceedings{vizzo2023itcsws, author = {I. Vizzo and B. Mersch and L. Nunes and L. Wiesmann and T. Guadagnino and C. Stachniss}, title = {{Toward Reproducible Version-Controlled Perception Platforms: Embracing Simplicity in Autonomous Vehicle Dataset Acquisition}}, booktitle = {Proc. of the Intl. Conf. on Intelligent Transportation Systems Workshops}, year = 2023, codeurl = {https://github.com/ipb-car/meta-workspace}, note = {accepted} }
- L. Wiesmann, T. Guadagnino, I. Vizzo, N. Zimmerman, Y. Pan, H. Kuang, J. Behley, and C. Stachniss, “LocNDF: Neural Distance Field Mapping for Robot Localization,” Ieee robotics and automation letters (ra-l), vol. 8, iss. 8, p. 4999–5006, 2023. doi:10.1109/LRA.2023.3291274
[BibTeX] [PDF] [Code] [Video]@article{wiesmann2023ral-icra, author = {L. Wiesmann and T. Guadagnino and I. Vizzo and N. Zimmerman and Y. Pan and H. Kuang and J. Behley and C. Stachniss}, title = {{LocNDF: Neural Distance Field Mapping for Robot Localization}}, journal = ral, volume = {8}, number = {8}, pages = {4999--5006}, year = 2023, url = {https://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/wiesmann2023ral-icra.pdf}, issn = {2377-3766}, doi = {10.1109/LRA.2023.3291274}, codeurl = {https://github.com/PRBonn/LocNDF}, videourl = {https://youtu.be/-0idH21BpMI}, }
- E. Marks, M. Sodano, F. Magistri, L. Wiesmann, D. Desai, R. Marcuzzi, J. Behley, and C. Stachniss, “High Precision Leaf Instance Segmentation in Point Clouds Obtained Under Real Field Conditions,” Ieee robotics and automation letters (ra-l), vol. 8, iss. 8, pp. 4791-4798, 2023. doi:10.1109/LRA.2023.3288383
[BibTeX] [PDF] [Code] [Video]@article{marks2023ral, author = {E. Marks and M. Sodano and F. Magistri and L. Wiesmann and D. Desai and R. Marcuzzi and J. Behley and C. Stachniss}, title = {{High Precision Leaf Instance Segmentation in Point Clouds Obtained Under Real Field Conditions}}, journal = ral, pages = {4791-4798}, volume = {8}, number = {8}, issn = {2377-3766}, year = {2023}, doi = {10.1109/LRA.2023.3288383}, codeurl = {https://github.com/PRBonn/plant_pcd_segmenter}, videourl = {https://youtu.be/dvA1SvQ4iEY} }
- L. Nunes, L. Wiesmann, R. Marcuzzi, X. Chen, J. Behley, and C. Stachniss, “Temporal Consistent 3D LiDAR Representation Learning for Semantic Perception in Autonomous Driving,” in Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), 2023.
[BibTeX] [PDF] [Code] [Video]@inproceedings{nunes2023cvpr, author = {L. Nunes and L. Wiesmann and R. Marcuzzi and X. Chen and J. Behley and C. Stachniss}, title = {{Temporal Consistent 3D LiDAR Representation Learning for Semantic Perception in Autonomous Driving}}, booktitle = cvpr, year = 2023, codeurl = {https://github.com/PRBonn/TARL}, videourl = {https://youtu.be/0CtDbwRYLeo}, }
- I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley, and C. Stachniss, “KISS-ICP: In Defense of Point-to-Point ICP – Simple, Accurate, and Robust Registration If Done the Right Way,” Ieee robotics and automation letters (ra-l), vol. 8, iss. 2, pp. 1-8, 2023. doi:10.1109/LRA.2023.3236571
[BibTeX] [PDF] [Code] [Video]@article{vizzo2023ral, author = {Vizzo, Ignacio and Guadagnino, Tiziano and Mersch, Benedikt and Wiesmann, Louis and Behley, Jens and Stachniss, Cyrill}, title = {{KISS-ICP: In Defense of Point-to-Point ICP -- Simple, Accurate, and Robust Registration If Done the Right Way}}, journal = ral, pages = {1-8}, doi = {10.1109/LRA.2023.3236571}, volume = {8}, number = {2}, year = {2023}, codeurl = {https://github.com/PRBonn/kiss-icp}, videourl = {https://youtu.be/h71aGiD-uxU} }
- R. Marcuzzi, L. Nunes, L. Wiesmann, J. Behley, and C. Stachniss, “Mask-Based Panoptic LiDAR Segmentation for Autonomous Driving,” Ieee robotics and automation letters (ra-l), vol. 8, iss. 2, p. 1141–1148, 2023. doi:10.1109/LRA.2023.3236568
[BibTeX] [PDF] [Code] [Video]@article{marcuzzi2023ral, author = {R. Marcuzzi and L. Nunes and L. Wiesmann and J. Behley and C. Stachniss}, title = {{Mask-Based Panoptic LiDAR Segmentation for Autonomous Driving}}, journal = ral, volume = {8}, number = {2}, pages = {1141--1148}, year = 2023, doi = {10.1109/LRA.2023.3236568}, videourl = {https://youtu.be/I8G9VKpZux8}, codeurl = {https://github.com/PRBonn/MaskPLS}, }
- L. Wiesmann, L. Nunes, J. Behley, and C. Stachniss, “KPPR: Exploiting Momentum Contrast for Point Cloud-Based Place Recognition,” Ieee robotics and automation letters (ra-l), vol. 8, iss. 2, pp. 592-599, 2023. doi:10.1109/LRA.2022.3228174
[BibTeX] [PDF] [Code] [Video]@article{wiesmann2023ral, author = {L. Wiesmann and L. Nunes and J. Behley and C. Stachniss}, title = {{KPPR: Exploiting Momentum Contrast for Point Cloud-Based Place Recognition}}, journal = ral, volume = {8}, number = {2}, pages = {592-599}, year = 2023, issn = {2377-3766}, doi = {10.1109/LRA.2022.3228174}, codeurl = {https://github.com/PRBonn/kppr}, videourl = {https://youtu.be/bICz1sqd8Xs} }
- M. Arora, L. Wiesmann, X. Chen, and C. Stachniss, “Static Map Generation from 3D LiDAR Point Clouds Exploiting Ground Segmentation,” Journal on robotics and autonomous systems (ras), vol. 159, p. 104287, 2023. doi:https://doi.org/10.1016/j.robot.2022.104287
[BibTeX] [PDF] [Code]@article{arora2023jras, author = {M. Arora and L. Wiesmann and X. Chen and C. Stachniss}, title = {{Static Map Generation from 3D LiDAR Point Clouds Exploiting Ground Segmentation}}, journal = jras, volume = {159}, pages = {104287}, year = {2023}, issn = {0921-8890}, doi = {https://doi.org/10.1016/j.robot.2022.104287}, codeurl = {https://github.com/PRBonn/dynamic-point-removal}, }
2022
- N. Zimmerman, L. Wiesmann, T. Guadagnino, T. Läbe, J. Behley, and C. Stachniss, “Robust Onboard Localization in Changing Environments Exploiting Text Spotting,” in Proc. of the ieee/rsj intl. conf. on intelligent robots and systems (iros), 2022.
[BibTeX] [PDF] [Code]@inproceedings{zimmerman2022iros, title = {{Robust Onboard Localization in Changing Environments Exploiting Text Spotting}}, author = {N. Zimmerman and L. Wiesmann and T. Guadagnino and T. Läbe and J. Behley and C. Stachniss}, booktitle = iros, year = {2022}, codeurl = {https://github.com/PRBonn/tmcl}, }
- I. Vizzo, B. Mersch, R. Marcuzzi, L. Wiesmann, J. Behley, and C. Stachniss, “Make it dense: self-supervised geometric scan completion of sparse 3d lidar scans in large outdoor environments,” Ieee robotics and automation letters (ra-l), vol. 7, iss. 3, pp. 8534-8541, 2022. doi:10.1109/LRA.2022.3187255
[BibTeX] [PDF] [Code] [Video]@article{vizzo2022ral, author = {I. Vizzo and B. Mersch and R. Marcuzzi and L. Wiesmann and J. Behley and C. Stachniss}, title = {Make it Dense: Self-Supervised Geometric Scan Completion of Sparse 3D LiDAR Scans in Large Outdoor Environments}, journal = ral, url = {https://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/vizzo2022ral-iros.pdf}, codeurl = {https://github.com/PRBonn/make_it_dense}, year = {2022}, volume = {7}, number = {3}, pages = {8534-8541}, doi = {10.1109/LRA.2022.3187255}, videourl = {https://youtu.be/NVjURcArHn8}, }
- L. Wiesmann, T. Guadagnino, I. Vizzo, G. Grisetti, J. Behley, and C. Stachniss, “DCPCR: Deep Compressed Point Cloud Registration in Large-Scale Outdoor Environments,” Ieee robotics and automation letters (ra-l), vol. 7, iss. 3, pp. 6327-6334, 2022. doi:10.1109/LRA.2022.3171068
[BibTeX] [PDF] [Code] [Video]@article{wiesmann2022ral-iros, author = {L. Wiesmann and T. Guadagnino and I. Vizzo and G. Grisetti and J. Behley and C. Stachniss}, title = {{DCPCR: Deep Compressed Point Cloud Registration in Large-Scale Outdoor Environments}}, journal = ral, year = 2022, volume = 7, number = 3, pages = {6327-6334}, issn = {2377-3766}, doi = {10.1109/LRA.2022.3171068}, codeurl = {https://github.com/PRBonn/DCPCR}, videourl = {https://youtu.be/RqLr2RTGy1s}, }
- L. Wiesmann, R. Marcuzzi, C. Stachniss, and J. Behley, “Retriever: Point Cloud Retrieval in Compressed 3D Maps,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2022.
[BibTeX] [PDF]@inproceedings{wiesmann2022icra, author = {L. Wiesmann and R. Marcuzzi and C. Stachniss and J. Behley}, title = {{Retriever: Point Cloud Retrieval in Compressed 3D Maps}}, booktitle = icra, year = 2022, }
- R. Marcuzzi, L. Nunes, L. Wiesmann, I. Vizzo, J. Behley, and C. Stachniss, “Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans,” Ieee robotics and automation letters (ra-l), vol. 7, iss. 2, pp. 1550-1557, 2022. doi:10.1109/LRA.2022.3140439
[BibTeX] [PDF]@article{marcuzzi2022ral, author = {R. Marcuzzi and L. Nunes and L. Wiesmann and I. Vizzo and J. Behley and C. Stachniss}, title = {{Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans}}, journal = ral, year = 2022, doi = {10.1109/LRA.2022.3140439}, issn = {2377-3766}, volume = 7, number = 2, pages = {1550-1557}, }
2021
- M. Arora, L. Wiesmann, X. Chen, and C. Stachniss, “Mapping the Static Parts of Dynamic Scenes from 3D LiDAR Point Clouds Exploiting Ground Segmentation,” in Proc. of the European Conf. on Mobile Robots (ECMR), 2021.
[BibTeX] [PDF] [Code]@InProceedings{arora2021ecmr, author = {M. Arora and L. Wiesmann and X. Chen and C. Stachniss}, title = {{Mapping the Static Parts of Dynamic Scenes from 3D LiDAR Point Clouds Exploiting Ground Segmentation}}, booktitle = ecmr, codeurl = {https://github.com/humbletechy/Dynamic-Point-Removal}, year = {2021}, }
- X. Chen, S. Li, B. Mersch, L. Wiesmann, J. Gall, J. Behley, and C. Stachniss, “Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data,” Ieee robotics and automation letters (ra-l), vol. 6, pp. 6529-6536, 2021. doi:10.1109/LRA.2021.3093567
[BibTeX] [PDF] [Code] [Video]@article{chen2021ral, title={{Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data}}, author={X. Chen and S. Li and B. Mersch and L. Wiesmann and J. Gall and J. Behley and C. Stachniss}, year={2021}, volume=6, issue=4, pages={6529-6536}, journal=ral, url = {https://www.ipb.uni-bonn.de/pdfs/chen2021ral-iros.pdf}, codeurl = {https://github.com/PRBonn/LiDAR-MOS}, videourl = {https://youtu.be/NHvsYhk4dhw}, doi = {10.1109/LRA.2021.3093567}, issn = {2377-3766}, }
- L. Wiesmann, A. Milioto, X. Chen, C. Stachniss, and J. Behley, “Deep Compression for Dense Point Cloud Maps,” Ieee robotics and automation letters (ra-l), vol. 6, pp. 2060-2067, 2021. doi:10.1109/LRA.2021.3059633
[BibTeX] [PDF] [Code] [Video]@article{wiesmann2021ral, author = {L. Wiesmann and A. Milioto and X. Chen and C. Stachniss and J. Behley}, title = {{Deep Compression for Dense Point Cloud Maps}}, journal = ral, volume = 6, issue = 2, pages = {2060-2067}, doi = {10.1109/LRA.2021.3059633}, year = 2021, url = {https://www.ipb.uni-bonn.de/pdfs/wiesmann2021ral.pdf}, codeurl = {https://github.com/PRBonn/deep-point-map-compression}, videourl = {https://youtu.be/fLl9lTlZrI0} }
2020
- C. Stachniss, I. Vizzo, L. Wiesmann, and N. Berning, How To Setup and Run a 100\% Digital Conf.: DIGICROP 2020, 2020.
[BibTeX] [PDF]
The purpose of this record is to document the setup and execution of DIGICROP 2020 and to simplify conducting future online events of that kind. DIGICROP 2020 was a 100\% virtual conference run via Zoom with around 900 registered people in November 2020. It consisted of video presentations available via our website and a single-day live event for Q&A. We had around 450 people attending the Q&A session overall, most of the time 200-250 people have been online at the same time. This document is a collection of notes, instructions, and todo lists. It is not a polished manual, however, we believe these notes will be useful for other conference organizers and for us in the future.
@misc{stachniss2020digitalconf, author = {C. Stachniss and I. Vizzo and L. Wiesmann and N. Berning}, title = {{How To Setup and Run a 100\% Digital Conf.: DIGICROP 2020}}, year = {2020}, url = {https://www.ipb.uni-bonn.de/pdfs/stachniss2020digitalconf.pdf}, abstract = {The purpose of this record is to document the setup and execution of DIGICROP 2020 and to simplify conducting future online events of that kind. DIGICROP 2020 was a 100\% virtual conference run via Zoom with around 900 registered people in November 2020. It consisted of video presentations available via our website and a single-day live event for Q&A. We had around 450 people attending the Q&A session overall, most of the time 200-250 people have been online at the same time. This document is a collection of notes, instructions, and todo lists. It is not a polished manual, however, we believe these notes will be useful for other conference organizers and for us in the future.}, }