% reduced Plückermatrix from Plücker vector see PCV (7.132) ff Usage [Gr , Rm] = calc_Gamma_reduced(L) L - 6x1 Plücker Line Gr - 2x4 reduced Gamma matrix / reduced Plückermatrix Rm - 2x4 reduction matrix Wolfgang Förstner 02/2010 wfoerstn@uni-bonn.de See also calc_Gamma, calc_Gammadual, calc_Gammadual_reduced, calc_Pi calc_Pidual, calc_Dual
0001 %% reduced Plückermatrix from Plücker vector 0002 % see PCV (7.132) ff 0003 % 0004 % Usage 0005 % [Gr , Rm] = calc_Gamma_reduced(L) 0006 % 0007 % L - 6x1 Plücker Line 0008 % Gr - 2x4 reduced Gamma matrix / reduced Plückermatrix 0009 % Rm - 2x4 reduction matrix 0010 % 0011 % Wolfgang Förstner 02/2010 0012 % wfoerstn@uni-bonn.de 0013 % 0014 % See also calc_Gamma, calc_Gammadual, calc_Gammadual_reduced, 0015 % calc_Pi calc_Pidual, calc_Dual 0016 0017 function [Gr , Rm] = calc_Gamma_reduced(L) 0018 0019 [~,i] = max(abs(L)); 0020 G = calc_Gamma(L); 0021 0022 switch i 0023 case 4 0024 Rm = [0 1 0 0;0 0 1 0]; 0025 Gr = G([2,3]',:); 0026 case 5 0027 Rm = [1 0 0 0;0 0 1 0]; 0028 Gr = G([3,1]',:); 0029 case 6 0030 Rm = [1 0 0 0;0 1 0 0]; 0031 Gr = G([1,2]',:); 0032 case 1 0033 Rm = [1 0 0 0;0 0 0 1]; 0034 Gr = G([1,4]',:); 0035 case 2 0036 Rm = [0 1 0 0;0 0 0 1]; 0037 Gr = G([2,4]',:); 0038 case 3 0039 Rm = [0 0 1 0;0 0 0 1]; 0040 Gr = G([3,4]',:); 0041 end