% intersection point X of two coplanar 3D-lines L and M precondition: lines are not equal Usage: X = calc_intersect_3D_Lines2Point(L,M) L, M - 6x1 Plücker Lines X - 4x1 homogeneous 3D point Wolfgang Förstner wfoerstn@uni-bonn.de See also calc_intersect_3D_Lines2Point_finite calc_join_3D_Lines2Plane, calc_join_3D_Lines2Plane_finite
0001 %% intersection point X of two coplanar 3D-lines L and M 0002 % precondition: lines are not equal 0003 % 0004 % Usage: 0005 % X = calc_intersect_3D_Lines2Point(L,M) 0006 % 0007 % L, M - 6x1 Plücker Lines 0008 % X - 4x1 homogeneous 3D point 0009 % 0010 % Wolfgang Förstner 0011 % wfoerstn@uni-bonn.de 0012 % 0013 % See also calc_intersect_3D_Lines2Point_finite 0014 % calc_join_3D_Lines2Plane, calc_join_3D_Lines2Plane_finite 0015 0016 function X = calc_intersect_3D_Lines2Point(L,M) 0017 0018 % matrix for constraints Gammadual(L)*X=0, ... 0019 T = [calc_Gammadual(L);... 0020 calc_Gammadual(M)]; 0021 0022 % nullspace of T yields the target point X 0023 [~,~,V] = svd(T); 0024 0025 X = V(:,4);