0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018 function sugr_show_Line_2D(Line_2D,name)
0019
0020 if nargin<2
0021 name = 'l';
0022 end
0023
0024 global type_name
0025
0026 f = sugr_get_isfinite_Line_2D(Line_2D);
0027 typ_no = Line_2D.type;
0028
0029 if f
0030 fprintf('\n%s: finite %s\n',name,type_name{typ_no})
0031 else
0032 fprintf('\n%s: infinite %s\n',name,type_name{typ_no})
0033 end
0034
0035
0036 [e,Cee] = sugr_get_Euclidean_Line_2D(Line_2D);
0037 fprintf('\t%s_e =\t%5.3f\t\tCov_ee =\t%5.3f %5.3f\n',name,e(1),Cee(1,1), Cee(1,2))
0038 fprintf('\t\t\t%5.3f\t\t\t\t\t%5.3f %5.3f\n',e(2),Cee(2,1), Cee(2,2))
0039
0040 h = Line_2D.h;
0041 Chh = sugr_get_CovM_homogeneous_Vector(Line_2D);
0042 Crr = Line_2D.Crr;
0043 fprintf('\n\t\t\t%5.3f\t\t\t\t\t%5.3f %5.3f %5.3f\n',h(1),Chh(1,1), Chh(1,2), Chh(1,3))
0044 fprintf('\t%s_h =\t%5.3f\t\tCov_hh =\t%5.3f %5.3f %5.3f\t\tCov_rr =\t%5.3f %5.3f\n',name,h(2),Chh(2,1), Chh(2,2), Chh(2,3), Crr(1,1), Crr(1,2))
0045 fprintf('\t\t\t%5.3f\t\t\t\t\t%5.3f %5.3f %5.3f\t\t\t\t\t%5.3f %5.3f\n',h(3),Chh(3,1), Chh(3,2), Chh(3,3), Crr(2,1), Crr(2,2))
0046
0047 [x0,phi,sp,sq] = sugr_get_centroid_Line_2D(Line_2D);
0048 fprintf('\n\tx_0 = [%5.3f, %5.3f], phi = %5.3f°, sp = %5.3f°, sq = %5.3f\n',x0,phi*180/pi,sp*180/pi,sq)
0049
0050
0051